Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 2, 105 - 118, 30.08.2024
https://doi.org/10.17694/bajece.1218009

Öz

Kaynakça

  • [1] L. Bermudez, E. Delory, T. O’Reilly and J. Del Rio Fernandez, “Ocean observing systems demystified”, MTS/IEEE Biloxi - Mar. Technol. Our Futur. Glob. Local Challenges, Ocean. 2009, pp. 1–7.
  • [2] S. Abd Hakim, K. Tarigan, M. Situmorang, and T. Sembiring, “Synthesis of Urea Sensors using Potentiometric Methods with Modification of Electrode Membranes Indicators of ISE from PVA-Enzymes Coating PVC-KT p ClPB”, J. Phys. Conf. Ser., vol. 1120, no. 1, 2018.
  • [3] A. Sheth, “Interoperating Geographic Information Systems”, Interoperating Geogr. Inf. Syst., pp. 5–30, 1999.
  • [4] F. Wang, L. Hu, J. Zhou, J. Hu and K. Zhao, “A semantics-based approach to multi-source heterogeneous information fusion in the internet of things”, Soft Comput., vol. 21, no. 8, pp. 2005–2013, 2017.
  • [5] M. Arooj, M. Asif and S. Zeeshan, “Modeling Smart Agriculture using SensorML”, Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 5, pp. 0–6, 2017.
  • [6] A. Haller et al., “The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation”, Semant. Web, vol. 10, no. 1, pp. 9–32, 2018.
  • [7] J. Liu, Y. Li, X. Tian, A. K. Sangaiah and J. Wang, “Towards semantic sensor data: An ontology approach”, Sensors (Switzerland), vol. 19, no. 5, 2019, pp. 1–21.
  • [8] H. K. Patni and C. A. Henson, “Linked Sensor Data”, 2010, pp. 362–370.
  • [9] A. N. U. Armin Haller, S. B. Krzysztof Janowicz, University of California, C. Simon Cox, T. U. of B. Danh Le Phuoc, A. N. U. Kerry Taylor, and É. N. S. des M. de S.-É. Maxime Lefrançois, “Semantic Sensor Network Ontology—W3C,” 2011. [Online]. Available: https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/. [Accessed: 20-May-2021].
  • [10] P. Barnaghi et al., “Semantic Sensor Network XG Final Report”, 2017.
  • [11] J. P. Calbimonte, H. Jeung, O. Corcho and K. Aberer, “Enabling query technologies for the semantic sensor web”, Int. J. Semant. Web Inf. Syst., vol. 8, no. 1, 2012, pp. 43–63.
  • [12] S. Avancha, C. Patel and A. Joshi, “Ontology-driven adaptive sensor networks”, Proc. MOBIQUITOUS 2004 - 1st Annu. Int. Conf. Mob. Ubiquitous Syst. Netw. Serv., 204, pp. 194–202.
  • [13] M. Chen, J. Zhou, G. Tao, J. Yang and L. Hu, “Wearable affective robot”, IEEE Access, vol. 6, 2018, pp. 64766–64776.
  • [14] L. Hu, J. Yang, M. Chen, Y. Qian and J. J. P. C. Rodrigues, “SCAI-SVSC: Smart clothing for effective interaction with a sustainable vital sign collection”, Futur. Gener. Comput. Syst., vol. 86, 2018, pp. 329–338.
  • [15] H. Rathore, A. Al-Ali, A. Mohamed, X. Du and M. Guizani, “DLRT: Deep learning approach for reliable diabetic treatment”, IEEE Glob. Commun. Conf. GLOBECOM 2017 - Proc., vol. 2018, 2017, pp. 1–6.
  • [16] A. A. Sarangdhar, P. V. R. Pawar and A. B. Blight, “Machine Learning Regression Technique for using IoT”, Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, pp. 449–454.
  • [17] S. S. Patil and S. A. Thorat, “Early detection of grapes diseases using machine learning and IoT”, Proc. - 2016 2nd Int. Conf. Cogn. Comput. Inf. Process. CCIP 2016, pp. 7–11.
  • [18] I. U. Din, M. Guizani, J. J. P. C. Rodrigues, S. Hassan and V. V. Korotaev, “Machine learning in the Internet of Things: Designed techniques for smart cities”, Futur. Gener. Comput. Syst., vol. 100, 2019, pp. 826–843.
  • [19] N. J.Patel and R. H. Jhaveri, “Detecting Packet Dropping Misbehaving Nodes using Support Vector Machine (SVM) in MANET”, Int. J. Comput. Appl., vol. 122, no. 4, 2015, pp. 26–32.
  • [20] J. Canedo and A. Skjellum, “Using machine learning to secure IoT systems”, 2016 14th Annu. Conf. Privacy, Secur. Trust. PST 2016, pp. 219–222.
  • [21] I. Kotenko, I. Saenko, F. Skorik and S. Bushuev, “Neural network approach to forecast the state of the Internet of Things elements”, Proc. Int. Conf. Soft Comput. Meas. SCM 2015, pp. 133–135.
  • [22] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi and K. Taylor, “IoT-Lite: a lightweight semantic model for the internet of things and its use with dynamic semantics”, Pers. Ubiquitous Comput., vol. 21, no. 3, 2017, pp. 475–487.
  • [23] I. Yang, “Design and Implementation of e-Health System Based on Semantic Sensor Network Using”, 2018.
  • [24] C. Kuster, J. L. Hippolyte and Y. Rezgui, “The UDSA ontology: An ontology to support real time urban sustainability assessment”, Adv. Eng. Softw., vol. 140, 2020, pp. 102731.
  • [25] C. Wang, Z. Chen, N. Chen and W. Wang, “A hydrological sensor web ontology based on the SSN ontology: A case study for a flood”, ISPRS Int. J. Geo-Information, vol. 7, no. 1, 2018.
  • [26] S. Ali, S. Khusro, I. Ullah, A. Khan and I. Khan, “SmartOntoSensor : Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications”, vol. 2017, 2017.
  • [27] J. Adeleke, D. Moodley, G. Rens and A. Adewumi, “Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control”, Sensors, vol. 17, no. 4, 2017, pp. 807.
  • [28] A. C. Onal, O. Berat Sezer, M. Ozbayoglu and E. Dogdu, “Weather data analysis and sensor fault detection using an extended IoT framework with semantics, big data, and machine learning”, Proc. - 2017 IEEE Int. Conf. Big Data, 2017 pp. 2037–2046.
  • [29] I.A. Al-Baltah, A.A.A. Ghani, G. M. Al-Gomaei, F. A. Abdulrazzak and A. A. A. Kharusi, “A scalable semantic data fusion framework for heterogeneous sensors data”, Journal of Ambient Intelligence and Humanized Computing, 2020, pp. 1-20.
  • [30] C. Kuster, J. L. Hippolyte and Y. Rezgui, “The UDSA ontology: An ontology to support real time urban sustainability assessment”, Advances in Engineering Software, vol. 140, 2020, 102731.
  • [31] A. A. Sarangdhar and V. R. Pawar, “Machine learning regression technique for cotton leaf disease detection and controlling using IoT”, In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) vol. 2, 2017, pp. 449-454.
  • [32] World Health Organization, “Global status report on noncommunicable diseases 2014”, (No. WHO/NMH/NVI/15.1), World Health Organization, 2014.
  • [33] A. Donkers, D. Yang, B. de Vries and N. Baken, “Semantic web technologies for indoor environmental quality: A review and ontology design”, Buildings, vol. 12, no. 10, 2022.
  • [34] F. Desimoni, S. Ilarri, L. Po, F. Rollo and R. Trillo-Lado, “Semantic traffic sensor data: The TRAFAIR experience”, Applied Sciences, vol. 10, no. 17, 2020.
  • [35] S. Domínguez-Amarillo, J. Fernández-Agüera, S. Cesteros-García and R. A. González-Lezcano, “Bad air can also kill: residential indoor air quality and pollutant exposure risk during the COVID-19 crisis”, International Journal of Environmental Research and Public Health, vol. 17, no. 19, 2020.
  • [36] R. Mumtaz et al., “Internet of things (Iot) based indoor air quality sensing and predictive analytic—A COVID-19 perspective”, Electronics, vol. 10, no. 2, 2021.
  • [37] Ö. Aktaş, M. Milli, S. Lakestani and M. Milli, “Modelling sensor ontology with the SOSA/SSN frameworks: a case study for laboratory parameters”, Turkish Journal Of Electrical Engineering And Computer Sciences, vol. 28, no. 5, 2020, pp. 2566-2585.
  • [38] M. A. Musen, “The protégé project: a look back and a look forward”, AI matters, vol. 1, no. 4, 2015, pp. 4-12.
  • [39] Apache Software Foundation, “‘Apache Jena’ A free and open source Java framework for building Semantic Web and Linked Data applications”, [Online]. Accessed on September 11, 2021. https://jena.apache.org/documentation/fuseki2/index.html.
  • [40] J. A. Adeleke, D. Moodley, G. Rens and A. O. Adewumi, “Integrating statistical machine learning in a semantic sensor web for proactive monitoring and control”, Sensors, vol. 17, no. 4, 2017, 807.
  • [41] N. Z. Abidin, A. R. Ismail and N. A. Emran, “Performance analysis of machine learning algorithms for missing value imputation”, International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, 2018.
  • [42] N. D. Darryl and M.M. Rahman, “Missing value imputation using stratified supervised learning for cardiovascular data”, J Inform Data Min, vol. 1, no. 13, 2016.
  • [43] V. Barnett and T. Lewis, “Outliers in statistical data”, John Wiley & Sons, Chichester, 1994.
  • [44] A. K. Jain, M. N. Murty and P. J. Flynn, “Data clustering: a review”, ACM computing surveys (CSUR), vol. 31, no. 3, 1999, pp. 264-323.

The Design and Implementation of a Semantic-Based Proactive System for Raw Sensor Data: A Case Study for Laboratory Environments

Yıl 2024, Cilt: 12 Sayı: 2, 105 - 118, 30.08.2024
https://doi.org/10.17694/bajece.1218009

Öz

Abstract— In the last decade, raw sensor data from sensor-based systems, the area of use of which has increased considerably, pose a fundamentally new set of research challenges, including structuring, sharing, and management. Although many different academic studies have been conducted on the integration of sets of data emerging from different sensor-based systems until present, these studies have generally focused on the integration of data as syntax. Studies on the semantic integration of data are limited, and still, the area of the study mentioned have problems that await solutions. In this article; parameters (CO2, TVOC, CO, PM2.5, PM10, Temperature, Humidity, Light), affecting laboratory analysis results and threatening the analyst's health, were measured in laboratory environments selected as “use cases”, and semantic-based information management framework was created for different sensor-based systems. Classical machine learning methods, and regression approaches which are frequently used for such sensor data, have been applied to the proposed sensor ontology and it has been measured that machine learning algorithm performs better on ontological sensor data. The most efficient algorithms in terms of accuracy and time were selected, and integrated into the proposed proactive approach, in order to take the selected laboratory environment’s condition under control.

Kaynakça

  • [1] L. Bermudez, E. Delory, T. O’Reilly and J. Del Rio Fernandez, “Ocean observing systems demystified”, MTS/IEEE Biloxi - Mar. Technol. Our Futur. Glob. Local Challenges, Ocean. 2009, pp. 1–7.
  • [2] S. Abd Hakim, K. Tarigan, M. Situmorang, and T. Sembiring, “Synthesis of Urea Sensors using Potentiometric Methods with Modification of Electrode Membranes Indicators of ISE from PVA-Enzymes Coating PVC-KT p ClPB”, J. Phys. Conf. Ser., vol. 1120, no. 1, 2018.
  • [3] A. Sheth, “Interoperating Geographic Information Systems”, Interoperating Geogr. Inf. Syst., pp. 5–30, 1999.
  • [4] F. Wang, L. Hu, J. Zhou, J. Hu and K. Zhao, “A semantics-based approach to multi-source heterogeneous information fusion in the internet of things”, Soft Comput., vol. 21, no. 8, pp. 2005–2013, 2017.
  • [5] M. Arooj, M. Asif and S. Zeeshan, “Modeling Smart Agriculture using SensorML”, Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 5, pp. 0–6, 2017.
  • [6] A. Haller et al., “The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation”, Semant. Web, vol. 10, no. 1, pp. 9–32, 2018.
  • [7] J. Liu, Y. Li, X. Tian, A. K. Sangaiah and J. Wang, “Towards semantic sensor data: An ontology approach”, Sensors (Switzerland), vol. 19, no. 5, 2019, pp. 1–21.
  • [8] H. K. Patni and C. A. Henson, “Linked Sensor Data”, 2010, pp. 362–370.
  • [9] A. N. U. Armin Haller, S. B. Krzysztof Janowicz, University of California, C. Simon Cox, T. U. of B. Danh Le Phuoc, A. N. U. Kerry Taylor, and É. N. S. des M. de S.-É. Maxime Lefrançois, “Semantic Sensor Network Ontology—W3C,” 2011. [Online]. Available: https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/. [Accessed: 20-May-2021].
  • [10] P. Barnaghi et al., “Semantic Sensor Network XG Final Report”, 2017.
  • [11] J. P. Calbimonte, H. Jeung, O. Corcho and K. Aberer, “Enabling query technologies for the semantic sensor web”, Int. J. Semant. Web Inf. Syst., vol. 8, no. 1, 2012, pp. 43–63.
  • [12] S. Avancha, C. Patel and A. Joshi, “Ontology-driven adaptive sensor networks”, Proc. MOBIQUITOUS 2004 - 1st Annu. Int. Conf. Mob. Ubiquitous Syst. Netw. Serv., 204, pp. 194–202.
  • [13] M. Chen, J. Zhou, G. Tao, J. Yang and L. Hu, “Wearable affective robot”, IEEE Access, vol. 6, 2018, pp. 64766–64776.
  • [14] L. Hu, J. Yang, M. Chen, Y. Qian and J. J. P. C. Rodrigues, “SCAI-SVSC: Smart clothing for effective interaction with a sustainable vital sign collection”, Futur. Gener. Comput. Syst., vol. 86, 2018, pp. 329–338.
  • [15] H. Rathore, A. Al-Ali, A. Mohamed, X. Du and M. Guizani, “DLRT: Deep learning approach for reliable diabetic treatment”, IEEE Glob. Commun. Conf. GLOBECOM 2017 - Proc., vol. 2018, 2017, pp. 1–6.
  • [16] A. A. Sarangdhar, P. V. R. Pawar and A. B. Blight, “Machine Learning Regression Technique for using IoT”, Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, pp. 449–454.
  • [17] S. S. Patil and S. A. Thorat, “Early detection of grapes diseases using machine learning and IoT”, Proc. - 2016 2nd Int. Conf. Cogn. Comput. Inf. Process. CCIP 2016, pp. 7–11.
  • [18] I. U. Din, M. Guizani, J. J. P. C. Rodrigues, S. Hassan and V. V. Korotaev, “Machine learning in the Internet of Things: Designed techniques for smart cities”, Futur. Gener. Comput. Syst., vol. 100, 2019, pp. 826–843.
  • [19] N. J.Patel and R. H. Jhaveri, “Detecting Packet Dropping Misbehaving Nodes using Support Vector Machine (SVM) in MANET”, Int. J. Comput. Appl., vol. 122, no. 4, 2015, pp. 26–32.
  • [20] J. Canedo and A. Skjellum, “Using machine learning to secure IoT systems”, 2016 14th Annu. Conf. Privacy, Secur. Trust. PST 2016, pp. 219–222.
  • [21] I. Kotenko, I. Saenko, F. Skorik and S. Bushuev, “Neural network approach to forecast the state of the Internet of Things elements”, Proc. Int. Conf. Soft Comput. Meas. SCM 2015, pp. 133–135.
  • [22] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi and K. Taylor, “IoT-Lite: a lightweight semantic model for the internet of things and its use with dynamic semantics”, Pers. Ubiquitous Comput., vol. 21, no. 3, 2017, pp. 475–487.
  • [23] I. Yang, “Design and Implementation of e-Health System Based on Semantic Sensor Network Using”, 2018.
  • [24] C. Kuster, J. L. Hippolyte and Y. Rezgui, “The UDSA ontology: An ontology to support real time urban sustainability assessment”, Adv. Eng. Softw., vol. 140, 2020, pp. 102731.
  • [25] C. Wang, Z. Chen, N. Chen and W. Wang, “A hydrological sensor web ontology based on the SSN ontology: A case study for a flood”, ISPRS Int. J. Geo-Information, vol. 7, no. 1, 2018.
  • [26] S. Ali, S. Khusro, I. Ullah, A. Khan and I. Khan, “SmartOntoSensor : Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications”, vol. 2017, 2017.
  • [27] J. Adeleke, D. Moodley, G. Rens and A. Adewumi, “Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control”, Sensors, vol. 17, no. 4, 2017, pp. 807.
  • [28] A. C. Onal, O. Berat Sezer, M. Ozbayoglu and E. Dogdu, “Weather data analysis and sensor fault detection using an extended IoT framework with semantics, big data, and machine learning”, Proc. - 2017 IEEE Int. Conf. Big Data, 2017 pp. 2037–2046.
  • [29] I.A. Al-Baltah, A.A.A. Ghani, G. M. Al-Gomaei, F. A. Abdulrazzak and A. A. A. Kharusi, “A scalable semantic data fusion framework for heterogeneous sensors data”, Journal of Ambient Intelligence and Humanized Computing, 2020, pp. 1-20.
  • [30] C. Kuster, J. L. Hippolyte and Y. Rezgui, “The UDSA ontology: An ontology to support real time urban sustainability assessment”, Advances in Engineering Software, vol. 140, 2020, 102731.
  • [31] A. A. Sarangdhar and V. R. Pawar, “Machine learning regression technique for cotton leaf disease detection and controlling using IoT”, In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) vol. 2, 2017, pp. 449-454.
  • [32] World Health Organization, “Global status report on noncommunicable diseases 2014”, (No. WHO/NMH/NVI/15.1), World Health Organization, 2014.
  • [33] A. Donkers, D. Yang, B. de Vries and N. Baken, “Semantic web technologies for indoor environmental quality: A review and ontology design”, Buildings, vol. 12, no. 10, 2022.
  • [34] F. Desimoni, S. Ilarri, L. Po, F. Rollo and R. Trillo-Lado, “Semantic traffic sensor data: The TRAFAIR experience”, Applied Sciences, vol. 10, no. 17, 2020.
  • [35] S. Domínguez-Amarillo, J. Fernández-Agüera, S. Cesteros-García and R. A. González-Lezcano, “Bad air can also kill: residential indoor air quality and pollutant exposure risk during the COVID-19 crisis”, International Journal of Environmental Research and Public Health, vol. 17, no. 19, 2020.
  • [36] R. Mumtaz et al., “Internet of things (Iot) based indoor air quality sensing and predictive analytic—A COVID-19 perspective”, Electronics, vol. 10, no. 2, 2021.
  • [37] Ö. Aktaş, M. Milli, S. Lakestani and M. Milli, “Modelling sensor ontology with the SOSA/SSN frameworks: a case study for laboratory parameters”, Turkish Journal Of Electrical Engineering And Computer Sciences, vol. 28, no. 5, 2020, pp. 2566-2585.
  • [38] M. A. Musen, “The protégé project: a look back and a look forward”, AI matters, vol. 1, no. 4, 2015, pp. 4-12.
  • [39] Apache Software Foundation, “‘Apache Jena’ A free and open source Java framework for building Semantic Web and Linked Data applications”, [Online]. Accessed on September 11, 2021. https://jena.apache.org/documentation/fuseki2/index.html.
  • [40] J. A. Adeleke, D. Moodley, G. Rens and A. O. Adewumi, “Integrating statistical machine learning in a semantic sensor web for proactive monitoring and control”, Sensors, vol. 17, no. 4, 2017, 807.
  • [41] N. Z. Abidin, A. R. Ismail and N. A. Emran, “Performance analysis of machine learning algorithms for missing value imputation”, International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, 2018.
  • [42] N. D. Darryl and M.M. Rahman, “Missing value imputation using stratified supervised learning for cardiovascular data”, J Inform Data Min, vol. 1, no. 13, 2016.
  • [43] V. Barnett and T. Lewis, “Outliers in statistical data”, John Wiley & Sons, Chichester, 1994.
  • [44] A. K. Jain, M. N. Murty and P. J. Flynn, “Data clustering: a review”, ACM computing surveys (CSUR), vol. 31, no. 3, 1999, pp. 264-323.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka, Bilgisayar Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Milli 0000-0002-0759-4433

Özlem Aktaş 0000-0001-6415-0698

Musa Milli 0000-0001-8323-6366

Sanaz Lakestanı 0000-0002-1661-7166

Erken Görünüm Tarihi 17 Ekim 2024
Yayımlanma Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Milli, M., Aktaş, Ö., Milli, M., Lakestanı, S. (2024). The Design and Implementation of a Semantic-Based Proactive System for Raw Sensor Data: A Case Study for Laboratory Environments. Balkan Journal of Electrical and Computer Engineering, 12(2), 105-118. https://doi.org/10.17694/bajece.1218009

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı