Derleme
BibTex RIS Kaynak Göster

Joining stainless steel by using laser welding

Yıl 2023, Cilt: 25 Sayı: 1, 354 - 372, 16.01.2023
https://doi.org/10.25092/baunfbed.1145884

Öz

Laser welding is used in industrial application areas. Laser welding, one of the modern joining methods, continues to be developed and offers important advantages such as precision, speed and flexibility over existing welding methods. In this paper; the existing studies in the literature on the joining stainless steel by using laser welding method has been investigated in detail. Evaluated studies were systematically analyzed and grouped and presented to the attention of the researchers. The researchers are mainly focused on the examination of the keyhole obtained by the deep penetration method in laser welding, the examination of the effect of laser welding parameters on the mechanical properties of the welds, the tensile strength, fatigue strength and temperature distribution of the material and the examination of the effect of laser welding parameters on the microstructural properties of the welded joint concentrated.

Kaynakça

  • Tülbentçi, K., Paslanmaz çeliklerin kaynagı, 1. baskı, Böhler Kaynak Dünyası, 5-10 (1985).
  • Tülbentçi, K., MIG/MAG gazaltı kaynak yöntemi, 1. baskı, Arctech, İstanbul, 56-58 (1998).
  • Hafez, K. M. ve Katayama, S., Fiber laser welding of AISI 304 stainless steel plates, Quarterly Journal of The Japan Welding Society, 27, 69-73, (2009).
  • Faerber, M. ve Berkmanns, J., Gases for increased laser welding productivity, In: Proceedings of the ISATA Conference, 791–798, (1996).
  • Kaluç, E., Paslanmaz çeliklerin kaynagı, 1. baskı, Gedik Holding Kaynak Dünyası, İstanbul, 1-22 (1996).
  • Yılmaz, R., Ostenitik paslanmaz çeliklerin lazer kaynağı ile birleştirilmesi ve mekanik özellikleri, El-Cezerî Fen ve Mühendislik Dergisi, 4, 3, 598-605, (2017).
  • Davis, J.R., Alloy Digest Sourcebook: Stainless steels, ASM International, (2000).
  • Berkmanns, J. ve Faerber, M., Facts about laser technology: laser welding, (2005). https://www.laserdeal.com/, (26.03.2022).
  • Aydın, K. ve Karaağaç, İ., Lazer kaynağı ve lazer kaynağının başlıca uygulamaları, El-Cezerî Fen ve Mühendislik Dergisi, 5, 2, 693-705, (2018).
  • Wu, S.K., Zheng, K. ve Zou, J. L., A study of the behavior and effects of nitrogen take-up from protective gas shielding in laser welding of stainless steel, Journal of Manufacturing Processes, 34, 477–485, (2018).
  • Merchant, V., Laser beam welding, In: Ahmed, N., editor, New developments in advanced welding, 1st Ed., Woodhead Publishing Limited, Cambridge, UK, 83-84, (2005).
  • Kugler, T.R., Fusion front penetration: Conduction Welding, In: Ready, J.F., editor, LIA handbook of laser materials processing, 1st Ed., Magnolia Publishing Inc., FL, USA, 310-312, (2001).
  • Dumord, E., Jouvard, J.M. ve Grevey, D., Keyhole modeling during CW Nd: YAG laser welding, In: Proceedings of SPIE, 2789, 213–220, (1996).
  • Omoniyi, P. O., Mahamood, R. M. ve Akinlabi, E. T., Impact of process parameters of laser welding on the mechanical properties of Ti6Al4V, Journal of Chemical Technology and Metallurgy, 56, 5, 1074-1081, (2021).
  • Alhajhamoud, M.; Candan, L.; Ilgaz, M.A.; Cinar, I.; Ozbey, S.; Corovic, S.; Miljavec, D.; Kayahan, E., Laser welding of 316L austenitic stainless steel in an air and a water environment, Materials, 15, 2248, (2022).
  • Lacroix, D., Jeandel, G. ve Boudot, C., Spectroscopic studies of laser induced plume during welding with a Nd: YAG laser, In: Proceedings of SPIE, 2789, 221–227, (1996).
  • https://www.ionix.fi/en/technologies/laser-processing/laser-welding, (20.08.2022).
  • Drobniak, P., Otto, A. ve Vazquez, R. G., Simulation of keyhole laser welding of stainless steel plates with a gap, Procedia CIRP, 94, 731-736, (2020).
  • Gao, J., Qin, G. ve Yang, J., Image processing of weld pool and keyhole in Nd: YAG laser welding of stainless steel based on visual sensing, The Transactions of Nonferrous Metals Society of China, 21, 423-428, (2011).
  • Li, L., Xia, H. ve Ma, G., Flow dynamics during single- and dual-spot laser welding with one common keyhole of 321 stainless steel, Journal of Materials Processing Technology, 255, 841–852, (2018).
  • Pang, S., Chen, X. ve Shao, X., Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity, Optics and Lasers in Engineering, 82, 28–40, (2016).
  • Wang, L., Mohammadpour, M. ve Gao, X., Adjustable Ring Mode (ARM) laser welding of stainless steels, Optics and Lasers in Engineering, 137, 106360, (2021).
  • Zhang, D., Wang, M. ve Shu, C., Dynamic keyhole behavior and keyhole instability in high power fiber laser welding of stainless steel, Optics and Laser Technology, 114, 1–9, (2019).
  • Kawahito, Y., Mizutani, M. ve Katayama, S., Defect formation mechanism and reduction procedure in 10 kw high power fiber laser welding of stainless steel, Quarterly Journal of The Japan Welding Society, 26, 3, 203–209, (2008).
  • Wang, L., Gao, X. ve Kong, F., Keyhole dynamic status and spatter behavior during welding of stainless steel with adjustable-ring mode laser beam, Journal of Manufacturing Processes, 74, 201–219, (2022).
  • Radek, N., Pietraszek, J. ve Goroshko, A., The impact of laser welding parameters on the mechanical properties of the weld, AIP Conference Proceedings, 2017, 020025, (2018).
  • Uzun, R.O., Lazerle kaynak işleminde kaynak parametrelerinin kaynak kalitesi üzerindeki etkilerinin incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2010).
  • Wang, H., Applications of laser welding in the railway industry, Woodhead Publishing Limited, (2013).
  • Alcock, J.A. ve Baufeld, B., Diode laser welding of stainless steel 304L, Journal of Materials Processing Technology, 240, 138–144, (2017).
  • Bertrand, P., Smurov, I. ve Grevey, D., Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel, Applied Surface Science, 168, 182-185, (2000).
  • Liao, Y.C. ve Yu, M. H., Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet, Journal of Materials Processing Technology, 190, 102–108, (2007).
  • Nawi, I.N., Saktioto ve Fadhali, M., Nd: YAG laser welding of stainless steel 304 for photonics device packaging, Procedia Engineering, 8, 374–379, (2011).
  • Cedeno-Viveros L.D., Garcia-Lopez E. ve Vazquez E.V., Laser micro-spot welding of AISI 302 stainless steel sheets, In Proceedings of SPIE, Laser-based Micro and Nano processing XII. San Francisco, 1052018, (2018).
  • Ventrella, V.A., Berretta, J.R. ve de Rossi, W., Pulsed Nd: YAG laser seam welding of AISI 316L stainless steel thin foils, Journal of Materials Processing Technology, 210, 1838–1843, (2010).
  • Chandelkar, V. ve Pradhan, S. K., Numerical simulation of temperature distribution and experimentation in laser beam welding of SS317L alloy, Materials Today: Proceedings, 27, 2758–2762, (2020).
  • Hietala, M., Jarvenpaa, A. ve Keskitalo, M., Tensile and fatigue properties of laser welded ultra high strength stainless spring steel lap joints, Procedia Manufacturing, 36, 131-137, (2019).
  • Gnanarathinam, A., Palanisamy, D. ve Manikandan, N., Comparison of corrosion behavior on laser welded austenitic stainless steel, Materials Today: Proceedings, 39, 649-653, (2020).
  • Pakmanesh, M.R. ve Shamanian, M., Optimization of pulsed laser welding process parameters in order to attain minimum under fill and undercut defects in thin 316L stainless steel foils, Optics & Laser Technology, 99, 30–38, (2018).
  • Sun, J., Nie, P., Feng, K., Li, Z., Guo, B. ve Jiang, E., The elimination of pores in laser welds of AISI 304 plate using different shielding gases, Journal of Materials Processing Technology, 248,56–63, (2017).
  • Ismail, M.I.S., Okamoto, Y., Okada, A. ve Uno, Y., Experimental investigation on micro-welding of thin stainless steel sheet by fiber laser, American Journal of Engineering and Applied Sciences, 4, 3, 314-320, (2011).
  • Hongxiao, W., Chunsheng, W., Chunyuan, S., Guangzhong, H., Ting, W. ve Jingfei, X., The study of laser welding parameters influence on fusion zone shape and surface quality of SUS301L stainless steel, International Journal of Applied Engineering Research, 4, 10, (2009).
  • Kurc-Lisiecka, A. ve Lisiecki, A., Laser welding of stainless steel, Journal of Achievements in Materials and Manufacturing Engineering, 1, 98, 32-40, (2020).
  • Scholz, T., Dickmann, K. ve Ostendorf, A., Investigation of the formation of nanoparticles during laser remote welding, Physics Procedia, 41, 90 – 97, (2013).
  • Khan, M.M.A., Romoli, L. ve Ishak, R., Experimental investigation on seam geometry, microstructure evolution and microhardness profile of laser welded martensitic stainless steels, Optics & Laser Technology, 44, 1611–1619, (2012).
  • Kökey, C., Sezgin, S., Çavuşoğlu, N., Gençalp-İrizalp, S. ve Saklakoğlu, İ. E., İnce paslanmaz çelik sacların fiber lazer ile kaynak edilebilirliğinin incelenmesi, Mühendis ve Makina, 57, 674, 65-72, (2016).
  • Gu, X., Zhu, K. ve Wu, S., Effect of welding parameters on weld formation quality and tensile-shear property of laser welded SUS301L stainless steel lap filet weld, Journal of Materials Research and Technology, 9, 3, 4840–4854, (2020).
  • Yan, S., Shi, Y. ve Liu, J., Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint, Optics and Laser Technology, 113, 428–436, (2019).
  • Madison, J.D. ve Aagesen, L. K., Quantitative characterization of porosity in laser welds of stainless steel, Scripta Materialia, 67, 783–786, (2012).
  • Ahmad, G.N., Raza, M.S. ve Singh, N.K., Kumar, H., Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and Duplex stainless steel 2205 thin sheets, Optics & Laser Technology, 126, 106117, (2020).
  • Kumar, N., Mukherjee, M. ve Bandyopadhyay, A., Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels, Optics & Laser Technology, 88, 24-39, (2017).
  • El-Batahgy, A.M., Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels, Materials Letters, 32, 155-163, (1997).
  • Zhang, M., Chen, G., Zhou, Y. ve Liao, S., Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser, Materials & Design, 53, 568-576, (2014).
  • Khier, M.A., Aziz, A.M. ve Exner, H., Mechanical and corrosion behaviour of conventional and high-speed remote scanner laser welding for duplex stainless steel: A comparative study, IOP Conference Series: Materials Science and Engineering, 610, 012021, (2019).
  • Landowski, M., Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science, 19, 1, 59, (2019).
  • Odermatt, A.E., Ventzke, V., Dorn, F., Dinse, R., Merhof, P. ve Kashaev, N., Effect of laser beam welding on microstructure, tensile strength and fatigue behaviour of duplex stainless steel 2205, Journal of Manufacturing Processes, 72, 148–158, (2021).
  • Yang, J., Wang, Y., Li, F., Huang, W., Jing, G., Wang, Z. ve Zeng, X., Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints, Journal of Materials Science & Technology, 35, 1817–1824, (2019).
  • Ghosh, A., Misra, D. ve Acharyya, S.K., Experimental and numerical investigation on laser welding of 2205 duplex stainless steel, Lasers in Manufacturing and Materials Processing, 6, 228–246, (2019).

Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi

Yıl 2023, Cilt: 25 Sayı: 1, 354 - 372, 16.01.2023
https://doi.org/10.25092/baunfbed.1145884

Öz

Lazer kaynağı endüstriyel uygulama alanlarında kullanılmaktadır. Modern birleştirme yöntemlerinden biri olan lazer kaynağı geliştirilmeye devam etmektedir ve mevcut kaynak yöntemlerine karşı hassasiyet, hız ve esneklik gibi önemli avantajlar sunmaktadır. Bu çalışmada; lazer kaynağı yöntemiyle paslanmaz çeliklerin birleştirilmesi hakkında literatürde mevcut çalışmalar detaylı şekilde araştırılmıştır. Değerlendirilen çalışmalar sistematik şekilde analiz edilmiş ve gruplandırılarak araştırmacıların dikkatine sunulmuştur. Araştırmalar özellikle lazer kaynakta derinlemesine nüfuziyet yöntemiyle elde edilen anahtar deliğinin incelenmesi, lazer kaynak parametrelerinin kaynakların mekanik özellikleri, malzemenin çekme dayanımı, yorulma dayanımı ve sıcaklık dağılımına etkilerinin incelenmesi ve lazer kaynak parametrelerinin kaynaklı bağlantının mikroyapısal özellikleri üzerindeki etkisinin incelendiği konulara yoğunlaşmıştır

Kaynakça

  • Tülbentçi, K., Paslanmaz çeliklerin kaynagı, 1. baskı, Böhler Kaynak Dünyası, 5-10 (1985).
  • Tülbentçi, K., MIG/MAG gazaltı kaynak yöntemi, 1. baskı, Arctech, İstanbul, 56-58 (1998).
  • Hafez, K. M. ve Katayama, S., Fiber laser welding of AISI 304 stainless steel plates, Quarterly Journal of The Japan Welding Society, 27, 69-73, (2009).
  • Faerber, M. ve Berkmanns, J., Gases for increased laser welding productivity, In: Proceedings of the ISATA Conference, 791–798, (1996).
  • Kaluç, E., Paslanmaz çeliklerin kaynagı, 1. baskı, Gedik Holding Kaynak Dünyası, İstanbul, 1-22 (1996).
  • Yılmaz, R., Ostenitik paslanmaz çeliklerin lazer kaynağı ile birleştirilmesi ve mekanik özellikleri, El-Cezerî Fen ve Mühendislik Dergisi, 4, 3, 598-605, (2017).
  • Davis, J.R., Alloy Digest Sourcebook: Stainless steels, ASM International, (2000).
  • Berkmanns, J. ve Faerber, M., Facts about laser technology: laser welding, (2005). https://www.laserdeal.com/, (26.03.2022).
  • Aydın, K. ve Karaağaç, İ., Lazer kaynağı ve lazer kaynağının başlıca uygulamaları, El-Cezerî Fen ve Mühendislik Dergisi, 5, 2, 693-705, (2018).
  • Wu, S.K., Zheng, K. ve Zou, J. L., A study of the behavior and effects of nitrogen take-up from protective gas shielding in laser welding of stainless steel, Journal of Manufacturing Processes, 34, 477–485, (2018).
  • Merchant, V., Laser beam welding, In: Ahmed, N., editor, New developments in advanced welding, 1st Ed., Woodhead Publishing Limited, Cambridge, UK, 83-84, (2005).
  • Kugler, T.R., Fusion front penetration: Conduction Welding, In: Ready, J.F., editor, LIA handbook of laser materials processing, 1st Ed., Magnolia Publishing Inc., FL, USA, 310-312, (2001).
  • Dumord, E., Jouvard, J.M. ve Grevey, D., Keyhole modeling during CW Nd: YAG laser welding, In: Proceedings of SPIE, 2789, 213–220, (1996).
  • Omoniyi, P. O., Mahamood, R. M. ve Akinlabi, E. T., Impact of process parameters of laser welding on the mechanical properties of Ti6Al4V, Journal of Chemical Technology and Metallurgy, 56, 5, 1074-1081, (2021).
  • Alhajhamoud, M.; Candan, L.; Ilgaz, M.A.; Cinar, I.; Ozbey, S.; Corovic, S.; Miljavec, D.; Kayahan, E., Laser welding of 316L austenitic stainless steel in an air and a water environment, Materials, 15, 2248, (2022).
  • Lacroix, D., Jeandel, G. ve Boudot, C., Spectroscopic studies of laser induced plume during welding with a Nd: YAG laser, In: Proceedings of SPIE, 2789, 221–227, (1996).
  • https://www.ionix.fi/en/technologies/laser-processing/laser-welding, (20.08.2022).
  • Drobniak, P., Otto, A. ve Vazquez, R. G., Simulation of keyhole laser welding of stainless steel plates with a gap, Procedia CIRP, 94, 731-736, (2020).
  • Gao, J., Qin, G. ve Yang, J., Image processing of weld pool and keyhole in Nd: YAG laser welding of stainless steel based on visual sensing, The Transactions of Nonferrous Metals Society of China, 21, 423-428, (2011).
  • Li, L., Xia, H. ve Ma, G., Flow dynamics during single- and dual-spot laser welding with one common keyhole of 321 stainless steel, Journal of Materials Processing Technology, 255, 841–852, (2018).
  • Pang, S., Chen, X. ve Shao, X., Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity, Optics and Lasers in Engineering, 82, 28–40, (2016).
  • Wang, L., Mohammadpour, M. ve Gao, X., Adjustable Ring Mode (ARM) laser welding of stainless steels, Optics and Lasers in Engineering, 137, 106360, (2021).
  • Zhang, D., Wang, M. ve Shu, C., Dynamic keyhole behavior and keyhole instability in high power fiber laser welding of stainless steel, Optics and Laser Technology, 114, 1–9, (2019).
  • Kawahito, Y., Mizutani, M. ve Katayama, S., Defect formation mechanism and reduction procedure in 10 kw high power fiber laser welding of stainless steel, Quarterly Journal of The Japan Welding Society, 26, 3, 203–209, (2008).
  • Wang, L., Gao, X. ve Kong, F., Keyhole dynamic status and spatter behavior during welding of stainless steel with adjustable-ring mode laser beam, Journal of Manufacturing Processes, 74, 201–219, (2022).
  • Radek, N., Pietraszek, J. ve Goroshko, A., The impact of laser welding parameters on the mechanical properties of the weld, AIP Conference Proceedings, 2017, 020025, (2018).
  • Uzun, R.O., Lazerle kaynak işleminde kaynak parametrelerinin kaynak kalitesi üzerindeki etkilerinin incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2010).
  • Wang, H., Applications of laser welding in the railway industry, Woodhead Publishing Limited, (2013).
  • Alcock, J.A. ve Baufeld, B., Diode laser welding of stainless steel 304L, Journal of Materials Processing Technology, 240, 138–144, (2017).
  • Bertrand, P., Smurov, I. ve Grevey, D., Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel, Applied Surface Science, 168, 182-185, (2000).
  • Liao, Y.C. ve Yu, M. H., Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet, Journal of Materials Processing Technology, 190, 102–108, (2007).
  • Nawi, I.N., Saktioto ve Fadhali, M., Nd: YAG laser welding of stainless steel 304 for photonics device packaging, Procedia Engineering, 8, 374–379, (2011).
  • Cedeno-Viveros L.D., Garcia-Lopez E. ve Vazquez E.V., Laser micro-spot welding of AISI 302 stainless steel sheets, In Proceedings of SPIE, Laser-based Micro and Nano processing XII. San Francisco, 1052018, (2018).
  • Ventrella, V.A., Berretta, J.R. ve de Rossi, W., Pulsed Nd: YAG laser seam welding of AISI 316L stainless steel thin foils, Journal of Materials Processing Technology, 210, 1838–1843, (2010).
  • Chandelkar, V. ve Pradhan, S. K., Numerical simulation of temperature distribution and experimentation in laser beam welding of SS317L alloy, Materials Today: Proceedings, 27, 2758–2762, (2020).
  • Hietala, M., Jarvenpaa, A. ve Keskitalo, M., Tensile and fatigue properties of laser welded ultra high strength stainless spring steel lap joints, Procedia Manufacturing, 36, 131-137, (2019).
  • Gnanarathinam, A., Palanisamy, D. ve Manikandan, N., Comparison of corrosion behavior on laser welded austenitic stainless steel, Materials Today: Proceedings, 39, 649-653, (2020).
  • Pakmanesh, M.R. ve Shamanian, M., Optimization of pulsed laser welding process parameters in order to attain minimum under fill and undercut defects in thin 316L stainless steel foils, Optics & Laser Technology, 99, 30–38, (2018).
  • Sun, J., Nie, P., Feng, K., Li, Z., Guo, B. ve Jiang, E., The elimination of pores in laser welds of AISI 304 plate using different shielding gases, Journal of Materials Processing Technology, 248,56–63, (2017).
  • Ismail, M.I.S., Okamoto, Y., Okada, A. ve Uno, Y., Experimental investigation on micro-welding of thin stainless steel sheet by fiber laser, American Journal of Engineering and Applied Sciences, 4, 3, 314-320, (2011).
  • Hongxiao, W., Chunsheng, W., Chunyuan, S., Guangzhong, H., Ting, W. ve Jingfei, X., The study of laser welding parameters influence on fusion zone shape and surface quality of SUS301L stainless steel, International Journal of Applied Engineering Research, 4, 10, (2009).
  • Kurc-Lisiecka, A. ve Lisiecki, A., Laser welding of stainless steel, Journal of Achievements in Materials and Manufacturing Engineering, 1, 98, 32-40, (2020).
  • Scholz, T., Dickmann, K. ve Ostendorf, A., Investigation of the formation of nanoparticles during laser remote welding, Physics Procedia, 41, 90 – 97, (2013).
  • Khan, M.M.A., Romoli, L. ve Ishak, R., Experimental investigation on seam geometry, microstructure evolution and microhardness profile of laser welded martensitic stainless steels, Optics & Laser Technology, 44, 1611–1619, (2012).
  • Kökey, C., Sezgin, S., Çavuşoğlu, N., Gençalp-İrizalp, S. ve Saklakoğlu, İ. E., İnce paslanmaz çelik sacların fiber lazer ile kaynak edilebilirliğinin incelenmesi, Mühendis ve Makina, 57, 674, 65-72, (2016).
  • Gu, X., Zhu, K. ve Wu, S., Effect of welding parameters on weld formation quality and tensile-shear property of laser welded SUS301L stainless steel lap filet weld, Journal of Materials Research and Technology, 9, 3, 4840–4854, (2020).
  • Yan, S., Shi, Y. ve Liu, J., Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint, Optics and Laser Technology, 113, 428–436, (2019).
  • Madison, J.D. ve Aagesen, L. K., Quantitative characterization of porosity in laser welds of stainless steel, Scripta Materialia, 67, 783–786, (2012).
  • Ahmad, G.N., Raza, M.S. ve Singh, N.K., Kumar, H., Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and Duplex stainless steel 2205 thin sheets, Optics & Laser Technology, 126, 106117, (2020).
  • Kumar, N., Mukherjee, M. ve Bandyopadhyay, A., Comparative study of pulsed Nd: YAG laser welding of AISI 304 and AISI 316 stainless steels, Optics & Laser Technology, 88, 24-39, (2017).
  • El-Batahgy, A.M., Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels, Materials Letters, 32, 155-163, (1997).
  • Zhang, M., Chen, G., Zhou, Y. ve Liao, S., Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser, Materials & Design, 53, 568-576, (2014).
  • Khier, M.A., Aziz, A.M. ve Exner, H., Mechanical and corrosion behaviour of conventional and high-speed remote scanner laser welding for duplex stainless steel: A comparative study, IOP Conference Series: Materials Science and Engineering, 610, 012021, (2019).
  • Landowski, M., Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science, 19, 1, 59, (2019).
  • Odermatt, A.E., Ventzke, V., Dorn, F., Dinse, R., Merhof, P. ve Kashaev, N., Effect of laser beam welding on microstructure, tensile strength and fatigue behaviour of duplex stainless steel 2205, Journal of Manufacturing Processes, 72, 148–158, (2021).
  • Yang, J., Wang, Y., Li, F., Huang, W., Jing, G., Wang, Z. ve Zeng, X., Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints, Journal of Materials Science & Technology, 35, 1817–1824, (2019).
  • Ghosh, A., Misra, D. ve Acharyya, S.K., Experimental and numerical investigation on laser welding of 2205 duplex stainless steel, Lasers in Manufacturing and Materials Processing, 6, 228–246, (2019).
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Serkan Özşahin 0000-0001-9263-8148

Kadir Çavdar 0000-0001-9126-0315

Yayımlanma Tarihi 16 Ocak 2023
Gönderilme Tarihi 20 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 1

Kaynak Göster

APA Özşahin, S., & Çavdar, K. (2023). Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 354-372. https://doi.org/10.25092/baunfbed.1145884
AMA Özşahin S, Çavdar K. Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi. BAUN Fen. Bil. Enst. Dergisi. Ocak 2023;25(1):354-372. doi:10.25092/baunfbed.1145884
Chicago Özşahin, Serkan, ve Kadir Çavdar. “Paslanmaz çeliklerin Lazer kaynağı yöntemi kullanılarak birleştirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 1 (Ocak 2023): 354-72. https://doi.org/10.25092/baunfbed.1145884.
EndNote Özşahin S, Çavdar K (01 Ocak 2023) Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 354–372.
IEEE S. Özşahin ve K. Çavdar, “Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 25, sy. 1, ss. 354–372, 2023, doi: 10.25092/baunfbed.1145884.
ISNAD Özşahin, Serkan - Çavdar, Kadir. “Paslanmaz çeliklerin Lazer kaynağı yöntemi kullanılarak birleştirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (Ocak 2023), 354-372. https://doi.org/10.25092/baunfbed.1145884.
JAMA Özşahin S, Çavdar K. Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2023;25:354–372.
MLA Özşahin, Serkan ve Kadir Çavdar. “Paslanmaz çeliklerin Lazer kaynağı yöntemi kullanılarak birleştirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 1, 2023, ss. 354-72, doi:10.25092/baunfbed.1145884.
Vancouver Özşahin S, Çavdar K. Paslanmaz çeliklerin lazer kaynağı yöntemi kullanılarak birleştirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2023;25(1):354-72.