BibTex RIS Kaynak Göster

Temperature dependent electronic properties of bulk Aluminium system

Yıl 2013, , 39 - 43, 23.12.2013
https://doi.org/10.17678/beuscitech.47129

Öz

We investigate the possibility of controlling the electronic structure of the bulk aluminium material by given thermal energy to the system. As a bulk material, the structure and optical properties of the aluminium are well known in the literature. Its thermal dependent structural change has also been investigated many times. However, up to the best of our knowledge the relationship between the electronic properties, mechanical structure and some phase transitions of the aluminium due to the thermal energy pumping to the system has not been analyzed in detail. We show that the band structure of aluminium is strongly dependent on the thermal energy obtained by the system and on the phase transitions.

Kaynakça

  • Ashcroft N, Sturm K (1971). Interband Absorption and the Optical Properties of Polyvalent Metals. Phys Rev B 3, 1898.
  • Cagın T, Dereli G, Uludogan M, Tomak M (1999). Thermal and mechanical properties of some fcc transition metals. Phys Rev B 59, 3468.
  • Celik F, Kazanc S, Yildiz A, Ozgen S (2008). Pressure effect on the structural properties of amorphous Ag during isothermal annealing. Intermetallics 16, 793.
  • Celik FA (2012). Molecular dynamics simulation of crystallization of amorphous aluminium modelled with EAM. Bitlis Eren Univ J Sci Technol 2, 44-48.
  • Cohen MH, Grest GS (1979). Liquid-glass transition, a free-volume approach. Phys Rev B 20, 1077.
  • Cohen ML, Bergstresser TK (1966). Band structures and pseudopotential semiconductors of the diamond and zinc-blende structures. Phys Rev 141, 789. for fourteen
  • Dakshinamurthy S, Quick N, Kar A (2007). Temperature- dependent optical properties of silicon carbide for wireless temperature sensors. J Phys Appl Phys 40, 353.
  • Daw MS, Baskes M (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50, 1285.
  • Daw MS, Hatcher R (1985). Application of the embedded atom method to phonons in transition metals. Solid State Comm 56, 697.
  • Gehrsitz S, Reinhart F, Gourgon C, Herres N, Vonlanthen A, of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling. J Appl Phys 87, 7825. The refractive index
  • Goerbig M (2011). Electronic properties of graphene in a strong magnetic field. Rev Mod Phys 83, 1193.
  • Harrison P (2005). Quantum wells, wires and dots: theoretical semiconductor nanostructures. John Wiley & Sons, 564 p. ISBN: 978-0-470-77098-6. physics of
  • Hui L, Pederiva F (2004). Structural study of local order in quenched lead under high pressures. Chem Phys 304, 261.
  • Im J, Cho E, Kim D, Horii H, Ihm J, Han S (2010). Effects of pressure on atomic and electronic structure and crystallization dynamics of amorphous Ge2Sb2Te5. Phys Rev B 81, 245211.
  • Jellison Jr G, Lowndes D, Wood R (1983). Importance of temperature-dependent optical properties for Raman- temperature measurements for silicon. Phys Rev B 28, 3272.
  • Jiang L, Shen W, Ogawa H, Guo Q (2003). Temperature dependence of the optical properties in hexagonal AlN. J Appl Phys 94, 5704.
  • Johnson P, Christy R (1975). Optical constants of copper and nickel as a function of temperature. Phys Rev B 11, 1315.
  • Kasowski R (1969). Temperature-dependent optical properties of Zn and Cd: A theoretical study. Phys Rev 187, 885.
  • Kazanc S (2007). Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi
  • alloy during isothermal annealing. Phys Lett A 365, 473.
  • Koksal K, Berakdar J, Pavlyukh Y (2011). Metal spherical nanostructures and dielectric response quantum-size effects in silver nanoclusters. Bitlis Eren Univ J Sci Technol 1, 4-6.
  • Lautenschlager P, Garriga M, Vina L, Cardona M (1987). Temperature dependence of the dielectric function and interband critical points in silicon. Phys Rev B 36, 4821.
  • Li J, Nam K, Nakarmi M, Lin J, Jiang H, Carrier P, Wei S-H (2003). Band structure and fundamental optical transitions in wurtzite AlN. Appl Phys Lett 83, 5163.
  • Martin RM (2004). Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 624 p., ISBN 9780521782852,
  • Mathewson A, Myers H (1972). Optical absorption in aluminium and the effect of temperature. J Phys F Met Phys 2, 403.
  • Neto AC, Guinea F, Peres N, Novoselov K, Geim A (2009). The electronic properties of graphene. Rev Mod Phys 81, 109.
  • Novoselov K, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004). Electric field effect in atomically thin carbon films. Science 306, 666.
  • Ozgen S, Duruk E (2004). Molecular dynamics simulation of solidification kinetics of aluminium using Sutton– Chen version of EAM. Mater Lett 58, 1071.
  • Parrinello M, Rahman A (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52, 7182.
  • Patterson J, Bailey B (2005). Solid-State Physics: Introduction to the Theory, 813 p., Springer, ISBN 978-3-642-02588-4.
  • Pei Q, Lu C, Lee H (2005). Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study. J Phys Condens Matter 17, 1493.
  • Saha S, Mehan N, Sreenivas K, Gupta V (2009). Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl Phys Lett 95, 071106.
  • Sahoo SK, Pal S, Sarkar P, Majumder C (2011). Size- dependent electronic structure of rutile TiO2 quantum dots. Chem Phys Lett 516, 68.
  • Stier O, Grundmann M, Bimberg D (1999). Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory. Phys Rev B 59, 5688.
  • Sutton A, Chen J (1990). Long-range Finnis–Sinclair potentials. Phil Mag Lett 61, 139.
  • Tanaka H (2005). Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J Non-crystalline solid 351, 678.
  • Winsemius P, Kampen FV, Lengkeek H, Went CV (1976). Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F Met Phys 6, 1583.
  • Zou C, Fan L, Chen R, Yan X, Yan W, Pan G, Wu Z, Gao W (2012). Thermally driven V2O5 formation and the temperature-dependent electronic structure study. Cryst Eng Comm 14, 626.
Yıl 2013, , 39 - 43, 23.12.2013
https://doi.org/10.17678/beuscitech.47129

Öz

Kaynakça

  • Ashcroft N, Sturm K (1971). Interband Absorption and the Optical Properties of Polyvalent Metals. Phys Rev B 3, 1898.
  • Cagın T, Dereli G, Uludogan M, Tomak M (1999). Thermal and mechanical properties of some fcc transition metals. Phys Rev B 59, 3468.
  • Celik F, Kazanc S, Yildiz A, Ozgen S (2008). Pressure effect on the structural properties of amorphous Ag during isothermal annealing. Intermetallics 16, 793.
  • Celik FA (2012). Molecular dynamics simulation of crystallization of amorphous aluminium modelled with EAM. Bitlis Eren Univ J Sci Technol 2, 44-48.
  • Cohen MH, Grest GS (1979). Liquid-glass transition, a free-volume approach. Phys Rev B 20, 1077.
  • Cohen ML, Bergstresser TK (1966). Band structures and pseudopotential semiconductors of the diamond and zinc-blende structures. Phys Rev 141, 789. for fourteen
  • Dakshinamurthy S, Quick N, Kar A (2007). Temperature- dependent optical properties of silicon carbide for wireless temperature sensors. J Phys Appl Phys 40, 353.
  • Daw MS, Baskes M (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50, 1285.
  • Daw MS, Hatcher R (1985). Application of the embedded atom method to phonons in transition metals. Solid State Comm 56, 697.
  • Gehrsitz S, Reinhart F, Gourgon C, Herres N, Vonlanthen A, of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling. J Appl Phys 87, 7825. The refractive index
  • Goerbig M (2011). Electronic properties of graphene in a strong magnetic field. Rev Mod Phys 83, 1193.
  • Harrison P (2005). Quantum wells, wires and dots: theoretical semiconductor nanostructures. John Wiley & Sons, 564 p. ISBN: 978-0-470-77098-6. physics of
  • Hui L, Pederiva F (2004). Structural study of local order in quenched lead under high pressures. Chem Phys 304, 261.
  • Im J, Cho E, Kim D, Horii H, Ihm J, Han S (2010). Effects of pressure on atomic and electronic structure and crystallization dynamics of amorphous Ge2Sb2Te5. Phys Rev B 81, 245211.
  • Jellison Jr G, Lowndes D, Wood R (1983). Importance of temperature-dependent optical properties for Raman- temperature measurements for silicon. Phys Rev B 28, 3272.
  • Jiang L, Shen W, Ogawa H, Guo Q (2003). Temperature dependence of the optical properties in hexagonal AlN. J Appl Phys 94, 5704.
  • Johnson P, Christy R (1975). Optical constants of copper and nickel as a function of temperature. Phys Rev B 11, 1315.
  • Kasowski R (1969). Temperature-dependent optical properties of Zn and Cd: A theoretical study. Phys Rev 187, 885.
  • Kazanc S (2007). Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi
  • alloy during isothermal annealing. Phys Lett A 365, 473.
  • Koksal K, Berakdar J, Pavlyukh Y (2011). Metal spherical nanostructures and dielectric response quantum-size effects in silver nanoclusters. Bitlis Eren Univ J Sci Technol 1, 4-6.
  • Lautenschlager P, Garriga M, Vina L, Cardona M (1987). Temperature dependence of the dielectric function and interband critical points in silicon. Phys Rev B 36, 4821.
  • Li J, Nam K, Nakarmi M, Lin J, Jiang H, Carrier P, Wei S-H (2003). Band structure and fundamental optical transitions in wurtzite AlN. Appl Phys Lett 83, 5163.
  • Martin RM (2004). Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 624 p., ISBN 9780521782852,
  • Mathewson A, Myers H (1972). Optical absorption in aluminium and the effect of temperature. J Phys F Met Phys 2, 403.
  • Neto AC, Guinea F, Peres N, Novoselov K, Geim A (2009). The electronic properties of graphene. Rev Mod Phys 81, 109.
  • Novoselov K, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004). Electric field effect in atomically thin carbon films. Science 306, 666.
  • Ozgen S, Duruk E (2004). Molecular dynamics simulation of solidification kinetics of aluminium using Sutton– Chen version of EAM. Mater Lett 58, 1071.
  • Parrinello M, Rahman A (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52, 7182.
  • Patterson J, Bailey B (2005). Solid-State Physics: Introduction to the Theory, 813 p., Springer, ISBN 978-3-642-02588-4.
  • Pei Q, Lu C, Lee H (2005). Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study. J Phys Condens Matter 17, 1493.
  • Saha S, Mehan N, Sreenivas K, Gupta V (2009). Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl Phys Lett 95, 071106.
  • Sahoo SK, Pal S, Sarkar P, Majumder C (2011). Size- dependent electronic structure of rutile TiO2 quantum dots. Chem Phys Lett 516, 68.
  • Stier O, Grundmann M, Bimberg D (1999). Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory. Phys Rev B 59, 5688.
  • Sutton A, Chen J (1990). Long-range Finnis–Sinclair potentials. Phil Mag Lett 61, 139.
  • Tanaka H (2005). Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J Non-crystalline solid 351, 678.
  • Winsemius P, Kampen FV, Lengkeek H, Went CV (1976). Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F Met Phys 6, 1583.
  • Zou C, Fan L, Chen R, Yan X, Yan W, Pan G, Wu Z, Gao W (2012). Thermally driven V2O5 formation and the temperature-dependent electronic structure study. Cryst Eng Comm 14, 626.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Koray Köksal

Fatih Ahmet Çelik Bu kişi benim

Fatih Koç Bu kişi benim

Yayımlanma Tarihi 23 Aralık 2013
Gönderilme Tarihi 5 Ekim 2013
Yayımlandığı Sayı Yıl 2013

Kaynak Göster

IEEE K. Köksal, F. A. Çelik, ve F. Koç, “Temperature dependent electronic properties of bulk Aluminium system”, Bitlis Eren University Journal of Science and Technology, c. 3, sy. 2, ss. 39–43, 2013, doi: 10.17678/beuscitech.47129.