Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 27 - 31, 28.06.2019
https://doi.org/10.17678/beuscitech.530584

Öz

Kaynakça

  • Referans1 M.E. Brown, Introduction to Thermal Analysis: Techniques and Applications, second ed., Kluwer Academic Publishers, Boston, 2001.
  • Referans2 W.W. Wendlandt in Thermal Methods of Analysis, 2nd Edition, John Wiley & Sons, New York, 1974.
  • Referans3 J. Cai, F. He, W. Yi and F. Yao, Chemical Engineering Journal 124 (2006) 15
  • Referans4 J. Cai, F. Yao, W. Yi and F. He, AIChE Journal 2006, 52 (4), 1554
  • Referans5 G.R. Heal, Thermochimica Acta 340-341 (1999) 69.
  • Referans6 D.W. Van Krevelen, C. Va Heerden and F.J. Huntjens, Fuel, 30 (1951) 253
  • Referans7 C.D. Doyle, Journal of Applied Polymer Science, 6 (1962) 639.
  • Referans8 C. D. Doyle, Anal Chem 1961, 33, 77.
  • Referans9 C. D. Doyle, J Appl Polym Sci 1961, 5, 285–292.
  • Referans10 C. D. Doyle, Nature 1965, 207, 290.
  • Referans11 A.W. Coats, J.P. Redfern, Nature 1964, 201, 68.
  • Referans12 A.W. Coats, J.P. Redfern, J Polym Sci, Part B: Polym Lett 1965, 3, 917.
  • Referans13 H.H. Horowitz, G. Metzger, Anal Chem 1963, 35, 1464–1468.
  • Referans14 J.R. MacCallum, J. Tanner, Eur Polym J 1970, 6, 1033–1039.
  • Referans15 J.R. MacCallum, J. Tanner, Eur Polym J 1970, 6, 907–917.
  • Referans16 G. Gyulai, E.J. Greenhow, Thermochimica Acta 1973, 6, 239–244.
  • Referans17 G. Gyulai, E.J. Greenhow, J Thermal Anal 1974, 6, 279–291.
  • Referans18 J.M.V. Capela, M.V. Capela, C.A. Ribeiro, J Math Chem 2009, 45, 769-775
  • Referans19 I.S. Gradshteyn and I.M. Ryzhik (1980). Tables of Integrals, Series and Products. Academic Press, New York.
  • Referans20 F. H. Deindoerfer and A. E. Humphrey, Applied Microbiology 1959, 7(4), 256–264

New Approximate Formula for the Arrhenius Temperature Integral by Using Incomplete Gamma Functions

Yıl 2019, , 27 - 31, 28.06.2019
https://doi.org/10.17678/beuscitech.530584

Öz



A
new analytical formula for the Arrhenius integral has been proposed by using
incomplete gamma functions, which is simple, accurate and reliable. The
proposed formula has compared with several published the Arrhenius integral
approaches, and is in agreement with the other approaches. Compared with the
other approximate formulas proposed in the literature, our proposed method
gives more accurate values in the precision of the activation energy as a
function of x and temperature.

Kaynakça

  • Referans1 M.E. Brown, Introduction to Thermal Analysis: Techniques and Applications, second ed., Kluwer Academic Publishers, Boston, 2001.
  • Referans2 W.W. Wendlandt in Thermal Methods of Analysis, 2nd Edition, John Wiley & Sons, New York, 1974.
  • Referans3 J. Cai, F. He, W. Yi and F. Yao, Chemical Engineering Journal 124 (2006) 15
  • Referans4 J. Cai, F. Yao, W. Yi and F. He, AIChE Journal 2006, 52 (4), 1554
  • Referans5 G.R. Heal, Thermochimica Acta 340-341 (1999) 69.
  • Referans6 D.W. Van Krevelen, C. Va Heerden and F.J. Huntjens, Fuel, 30 (1951) 253
  • Referans7 C.D. Doyle, Journal of Applied Polymer Science, 6 (1962) 639.
  • Referans8 C. D. Doyle, Anal Chem 1961, 33, 77.
  • Referans9 C. D. Doyle, J Appl Polym Sci 1961, 5, 285–292.
  • Referans10 C. D. Doyle, Nature 1965, 207, 290.
  • Referans11 A.W. Coats, J.P. Redfern, Nature 1964, 201, 68.
  • Referans12 A.W. Coats, J.P. Redfern, J Polym Sci, Part B: Polym Lett 1965, 3, 917.
  • Referans13 H.H. Horowitz, G. Metzger, Anal Chem 1963, 35, 1464–1468.
  • Referans14 J.R. MacCallum, J. Tanner, Eur Polym J 1970, 6, 1033–1039.
  • Referans15 J.R. MacCallum, J. Tanner, Eur Polym J 1970, 6, 907–917.
  • Referans16 G. Gyulai, E.J. Greenhow, Thermochimica Acta 1973, 6, 239–244.
  • Referans17 G. Gyulai, E.J. Greenhow, J Thermal Anal 1974, 6, 279–291.
  • Referans18 J.M.V. Capela, M.V. Capela, C.A. Ribeiro, J Math Chem 2009, 45, 769-775
  • Referans19 I.S. Gradshteyn and I.M. Ryzhik (1980). Tables of Integrals, Series and Products. Academic Press, New York.
  • Referans20 F. H. Deindoerfer and A. E. Humphrey, Applied Microbiology 1959, 7(4), 256–264
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Hüseyin Koç

Erhan Eser

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 22 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE H. Koç ve E. Eser, “New Approximate Formula for the Arrhenius Temperature Integral by Using Incomplete Gamma Functions”, Bitlis Eren University Journal of Science and Technology, c. 9, sy. 1, ss. 27–31, 2019, doi: 10.17678/beuscitech.530584.