Geochemistry of metamorphic-hosted iron ore deposit and associated silica caps in Arıdağ mountain, Bitlis, Eastern Anatolia: preliminary records and pathfinder elements for hydrothermal origin
Iron ore (magnetite-hematite) is one of the common ore deposits occurred in Bitlis and surrounding areas from Eastern Anatolia. A new Fe occurrence have recently been discovered in Mt. Arı (locally called as Gultik Mountain) at SE of Bitlis city. Fe ore presents in metamorphic basement rocks as predominantly disseminated-type and to lesser amount massive ore. The area also hosts silica-rich alteration zones. Here, the bulk samples from both disseminated Fe-ore and siliceous alteration zones have been geochemically analysed by XRF method. Obtained results show that the grade of Fe-ore as total Fe2O3 (wt.%) increase from 2 wt.% to 42 wt.%, together with MgO (from 0.01 to 5.3 wt.%,), CaO (from 0.13 to 1.90 wt.%) and Na2O (from 0.42 to 4.93 wt.%), as a function of decreasing SiO2 (from 68 to 39 wt.%) and Al2O3 (15 to 8 wt.%). Significant amount of Co (36-160 ppm), Mo (4-13 ppm), As (0.5- 3.7 ppm), Hg (2.3-4.0 ppm) and Sb (0.8-1.3 ppm) was determined in analyzed disseminated iron ore samples. Similarly, in the samples of silica caps, SiO2 range between 88 wt.% and 74 wt.%, and decrease with increasing Al2O3 (from 0.01 to 20.85 wt.%) and TiO2 (from 0.015 to 1.05 wt.%). Other oxides do not show regular trends. Such siliceous zones also include remarkable amount of Au (from 7.8 gr/t to 17.6 gr/t in some samples), Co (30-200 ppm), Mo (2-10 ppm), As (0.9-3.2 ppm), Hg (1.7-6.7 ppm) and Sb (0.7-73 ppm) contents. LREE enrichment also exist in high-grade Fe-ore. Based on the first preliminary geochemical results, it is concluded that the metamorphic-hosted Fe ore and Au-bearing silica caps from Mt. Arı have most likely hydrothermal in origin, and leaching of silica and the removal of iron, formed the iron ore (hematite-magnetite) in the metamorphic basement rocks. As a new target area, the region has a powerful potential. The uplifting of the metamorphic massif and related postmetamorphic tectonics (possibly in Neo-tectonic period) gave way the prominent channels for emplacement of hydrothermal fluids in the area. Due to an episode of regional extensional tectonic, the Au-Co-As-Hg-Sb-Mo-bearing silica-rich hydrothermal fluids relocated into the metamorphic basement.
Geosciences Application and Research Center of Ankara University, Ankara, Turkey.
Project Number
-----
Thanks
I would like to thank to Dr. Yusuf Kağan KADIOĞLU for conducting the geochemical analysis of samples at Geosciences Application and Research Center of Ankara University, Ankara, Turkey.
References
Boray, A. 1975. Bitlis dolayının yapısı ve metamorfizması. Bulletin of Turkish Geological Association (T.J.K.), 18/1, 81–85.
Boray, A. 1976. Bitlis Metamorfitleri (Masifi) Üzerine. Yeryuvarı ve İnsan, 1, 74–76.
Çolakoglu, A.R., 2005, Bitlis Masifi’inde (Hasbey-Van) gözlenen karbonat yankayaç Pb-Zn cevherlesmesine yönelik ön bulgular: 58th Geological Congress of Turkey, 58, p. 78–81.
Çolakoğlu, A.R., Hanilçi, N., Günay, K. 2011. Cenozoic collisional tectonics and origin of Pb-Zn-F mineralization in the Bitlis Massif, SE Turkey. International Geology Review 53/14, 1593–1621.
Figueiredo e Silva, R. C., Lobato, L. M., Rosiere, C. A., 2008. A Hydrothermal Origin for the Jaspilite-Hosted, Giant Serra Norte Iron Ore Deposits in the Carajas Mineral Province, Para State, Brazil. in S Hagemann, C Rosiere, J Gutzmer & N Beukes (eds), Banded Iron Formation-Related High-Grade Iron Ore. Society of Economic Geologists, Littleton, Colorado, USA, pp. 255-289
Göncüoglu, M.C., and Turhan, N., 1984, Geology of the Bitlis Metamorphic Belt, in Tekeli, O., and Göncüoglu, M.C. eds., International Symposium on Geology of the Taurus Belt Proceedings: Mineral Research and Exploration Institute of Turkey, p. 237–244.
Göncüoglu, M.C., and Turhan, N., 1985, Bitlis Metamorfik kuşağıorta bölümünün temel jeolojisi.Mineral Research and Exploration Institute of Turkey (M.T.A), unpublished report, No: 7707,Ankara, 225 p.
Hanilçi, N., and Öztürk, H., 2010, Geochemical/isotopic evolution of Pb-Zn deposits in the Centraland Eastern Taurides, Turkey: International Geology Review,DOI: 10.1080/00206811003680008.
Helvacı, C., 1984. Apatite-Rich Iron Deposits of the Avnik (Bingol) Region, Southeastern Turkey. Economic Geology, 79; 354-371.
İmamoglu, M. S., Nathan, Y., Coban, H., Soudry, D., Glenn, C. 2009. Geochemical, mineralogical and isotopic signatures of the Semikan, West Kasrık Turkish phosphorites from the Derik–Mazıdagı–Mardin area, SE Anatolia. International Journal Earth Science, 98, 1679–1690
Kamvong, T., Zaw, K., Siegele, R., 2007. PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: a pilot study. 15th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress. University of Melbourne, Melbourne, Australia.
Lobato, L.M., Figueiredo e Silva, R.C., Hagemann, S.G., Thorne,W.S., Zuchetti,M., 2008. Hypogene alteration associated with high-grade banded iron formation-related iron ore. In: Hagemann, S.G., Rosière, C.A., Gutzmer, J., Beukes, N.J. (Eds.), Banded Iron Formation-related High-grade Iron Ore. Reviews in Economic Geology, pp. 107–128.
Nadoll, P., Angerer, T., Mauk, J.L., French, D., Walshe, J. 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews 61; 1–32.Oyan, V., Tolluoğlu, A.Ü., 2006. Bitlis Masifi’nde (Yolcular Metamorfiti) Na-Feldispat Bakımından Zengin Lökogranitik Kayaçlar: Na-Feldispat Kaynağı Olarak Bir Potansiyel. Yerbilimleri Dergisi. 3: 1-11.
Pisiak, L.K., Canil, D., Grondahl, C., Plouffe, A., Ferbey, T. Anderson, R.G. 2015. Magnetite as a porphyry copper indicator mineral in till: a test using the Mount Polley porphyry copper-gold deposit, south-central British Columbia (NTS 093A); in Geoscience BC Summary of Activities 2014, Geoscience BC, Report 2015-1, p. 141–150.
Şengün, M., 1993. Bitlis Masifi’nin metamorfizması ve örtü çekirdek ilişkisi. MTA dergisi. 115:1-13.
Yıldırım, N., Gören, B., Dönmez, C., Yıldırım, E., Akyıldız, M., Kalı, B., Tablacı, A., Günay, K., Eroğlu, M., 2016. Prekambriyen masifinde mağmatik Ni-sülfid cevherleşmesi: Doğu Türkiye (Bitlis-Pancarlı). 69. Türkiye Jeoloji Kurultayı, 334-337.
Boray, A. 1975. Bitlis dolayının yapısı ve metamorfizması. Bulletin of Turkish Geological Association (T.J.K.), 18/1, 81–85.
Boray, A. 1976. Bitlis Metamorfitleri (Masifi) Üzerine. Yeryuvarı ve İnsan, 1, 74–76.
Çolakoglu, A.R., 2005, Bitlis Masifi’inde (Hasbey-Van) gözlenen karbonat yankayaç Pb-Zn cevherlesmesine yönelik ön bulgular: 58th Geological Congress of Turkey, 58, p. 78–81.
Çolakoğlu, A.R., Hanilçi, N., Günay, K. 2011. Cenozoic collisional tectonics and origin of Pb-Zn-F mineralization in the Bitlis Massif, SE Turkey. International Geology Review 53/14, 1593–1621.
Figueiredo e Silva, R. C., Lobato, L. M., Rosiere, C. A., 2008. A Hydrothermal Origin for the Jaspilite-Hosted, Giant Serra Norte Iron Ore Deposits in the Carajas Mineral Province, Para State, Brazil. in S Hagemann, C Rosiere, J Gutzmer & N Beukes (eds), Banded Iron Formation-Related High-Grade Iron Ore. Society of Economic Geologists, Littleton, Colorado, USA, pp. 255-289
Göncüoglu, M.C., and Turhan, N., 1984, Geology of the Bitlis Metamorphic Belt, in Tekeli, O., and Göncüoglu, M.C. eds., International Symposium on Geology of the Taurus Belt Proceedings: Mineral Research and Exploration Institute of Turkey, p. 237–244.
Göncüoglu, M.C., and Turhan, N., 1985, Bitlis Metamorfik kuşağıorta bölümünün temel jeolojisi.Mineral Research and Exploration Institute of Turkey (M.T.A), unpublished report, No: 7707,Ankara, 225 p.
Hanilçi, N., and Öztürk, H., 2010, Geochemical/isotopic evolution of Pb-Zn deposits in the Centraland Eastern Taurides, Turkey: International Geology Review,DOI: 10.1080/00206811003680008.
Helvacı, C., 1984. Apatite-Rich Iron Deposits of the Avnik (Bingol) Region, Southeastern Turkey. Economic Geology, 79; 354-371.
İmamoglu, M. S., Nathan, Y., Coban, H., Soudry, D., Glenn, C. 2009. Geochemical, mineralogical and isotopic signatures of the Semikan, West Kasrık Turkish phosphorites from the Derik–Mazıdagı–Mardin area, SE Anatolia. International Journal Earth Science, 98, 1679–1690
Kamvong, T., Zaw, K., Siegele, R., 2007. PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: a pilot study. 15th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress. University of Melbourne, Melbourne, Australia.
Lobato, L.M., Figueiredo e Silva, R.C., Hagemann, S.G., Thorne,W.S., Zuchetti,M., 2008. Hypogene alteration associated with high-grade banded iron formation-related iron ore. In: Hagemann, S.G., Rosière, C.A., Gutzmer, J., Beukes, N.J. (Eds.), Banded Iron Formation-related High-grade Iron Ore. Reviews in Economic Geology, pp. 107–128.
Nadoll, P., Angerer, T., Mauk, J.L., French, D., Walshe, J. 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews 61; 1–32.Oyan, V., Tolluoğlu, A.Ü., 2006. Bitlis Masifi’nde (Yolcular Metamorfiti) Na-Feldispat Bakımından Zengin Lökogranitik Kayaçlar: Na-Feldispat Kaynağı Olarak Bir Potansiyel. Yerbilimleri Dergisi. 3: 1-11.
Pisiak, L.K., Canil, D., Grondahl, C., Plouffe, A., Ferbey, T. Anderson, R.G. 2015. Magnetite as a porphyry copper indicator mineral in till: a test using the Mount Polley porphyry copper-gold deposit, south-central British Columbia (NTS 093A); in Geoscience BC Summary of Activities 2014, Geoscience BC, Report 2015-1, p. 141–150.
Şengün, M., 1993. Bitlis Masifi’nin metamorfizması ve örtü çekirdek ilişkisi. MTA dergisi. 115:1-13.
Yıldırım, N., Gören, B., Dönmez, C., Yıldırım, E., Akyıldız, M., Kalı, B., Tablacı, A., Günay, K., Eroğlu, M., 2016. Prekambriyen masifinde mağmatik Ni-sülfid cevherleşmesi: Doğu Türkiye (Bitlis-Pancarlı). 69. Türkiye Jeoloji Kurultayı, 334-337.
H. Çoban, “Geochemistry of metamorphic-hosted iron ore deposit and associated silica caps in Arıdağ mountain, Bitlis, Eastern Anatolia: preliminary records and pathfinder elements for hydrothermal origin”, Bitlis Eren University Journal of Science and Technology, vol. 9, no. 2, pp. 67–71, 2019, doi: 10.17678/beuscitech.609954.