BibTex RIS Cite

Effective atomic numbers and electron densities for some lanthanide oxide compounds using direct method in the energy region of 1 keV - 20 MeV

Year 2016, Volume: 6 Issue: 1, 7 - 12, 30.06.2016
https://doi.org/10.17678/beujst.07046

Abstract

In this paper, the effective atomic numbers and electron densities representing interaction of gamma rays with oxides of lanthanides have been studied. The effective atomic numbers for photon energy-absorption (ZPEAeff) and photon interaction (ZPIeff), and relative to air ZReff, the effective electron densities for photon energy-absorption (NPEAeff) and photon interaction (NPIeff) were calculated using the values of the mass attenuation and energy absorption coefficients. The variation of ZPEAeff, ZPIeff, ZReff, NPEAeff and NPIeff with energy were shown graphically. In the continuous energy region, it was observed that there are agreements and disagreements between photon interaction and photon energy-absorption for effective atomic numbers and electron densities of compounds in different energy regions. In addition, absorption edge effects on effective atomic numbers leading more than a single value of effective atomic number at a specific energy have been discussed for the given compounds. Comparisons with experiments wherever possible have been carried out for calculated values of Zeff and Neff.

References

  • Atomic weight softh elements, IUPAC, 2007, The table is based on the 2005 table at Pure Appl. Chem. 78 (2006) 2051-2066 with 2007 changes to the values forlutetium, molybdenum, nickel, ytterbium and zinc. /http://www. chem.qmul.ac.uk/iupac/AtWt/S.
  • El-Kateb AH, Rizk R, Abdul-Kader AM (2000). Determination of atomic cross- sections and effective atomic numbers for some alloys. Ann. Nucl. Energy 27,1333-1343.
  • Gowda S, Krishnaveni S, Gowna R (2005). Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instr. Methods B 239, 361-369.
  • Gowda S, Krishnaveni S, Yashoda T, Umesh TK, Gowda R (2004). Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Parmana 63, 529-531.
  • Hine GJ (1952). The effective atomic numbers of materials for various gamma interactions. Physics Review 85, 725-737.
  • İçelli O, Erzeneoglu S, Karahan İH, Cankaya G (2005). Effective atomic numbers for CoCuNi alloys using transmission experiments. JQSRT 91, 485–491.
  • İçelli O (2006). Practical method for experimental effective atomic number in the coherent to Compton scattering ratio. Journal of Quantitative Spectroscopy and Radiative Transfer 101, 151-158.
  • Kaewkhao J, Laopaiboon J, Chewpraditkul W (2008). Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. JQSRT 109, 1260-1265.
  • Kaewkhao J, Limsuwan P (2010). Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl. Instr. Methods Phys. Res. A 619, 295-297.
  • Kirdsiri K, Kaewkhao J, Pokaipisit A, Chewpraditkul W, Limsuwan P (2009). Gamma-rays shielding properties of xPbO:(100 Àx)B2O3 glasses system at 662 keV. Ann. Nucl. Energy 36, 1360-1365.
  • Kurudirek M, Büyükyıldız M, Özdemir Y (2010). Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV-100 GeV. Nucl. Instrum. Methods B 613, 251-256.
  • Kurudirek M (2014a). Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV–10 GeV. Nucl. Instrum. Methods B 336, 130-134.
  • Kurudirek M (2014b). Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiation Physics and Chemistry 102, 139-146.
  • Kurudirek M. and Kurudirek SV (2015). Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: Effective atomic number and electron density. Applied Radiation and Isotopes. 99, 54.
  • Manohara SR, Hanagodimath SM, Gerward L (2009). Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater 393, 465-472.
  • Manohara SR, Hanagodimath SM (2007). Studies on effective atomic numbers and electron densities of essential amino acids in the energy range in energy range 1 keV-100 GeV. Nucl Instrum. Methods B 258, 321-328.
  • Manohara SR, Hanagodimath SM, Thind KS, Gerward L (2008). On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl Instrum. Methods B 266, 3906-3912.
  • Murty VRK (2004). Effective atomic numbers for W/Cu alloy for total photon attenuation. Radiat. Phys. Chem 71, 667-669.
  • Niranjan RS, Rudraswamy B, Dhananjayan N (2012). Effective atomic number, electron density and kerma of gamma radiation for oxides of lanthanides. Pramana J. Phys. 78, 451-458.
  • Önder P, Tursucu A, Demir D, Gürol A (2012). Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds. Nucl. Instrum. Methods B 292, 1-10.
  • Shivaramu V. Ramprasath (2000). Effective atomic numbers for photon energy absorption and energy dependence of some hermoluminescent dosimetric compounds. Nucl. Instrum. Methods B 168, 294-304.
  • Singh G, Kumar Gupta M, Dhaliwal AS, Kahlon KS (2015). Measurement of attenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method. Journal of Alloys and Compounds 619, 356-360.
  • Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005). Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat. Phys. Chem. 72, 225–228.
  • Singh K, Singh H, Sharma V, Nathuram R, Khanna A, Kumar R, Bhatti SS, Sahota HS (2002). Gamma-ray attenuation coefficients in bismuth borate Glasses, Nucl. Instrum Methods B 194, 1-6.
  • Tengku Kamarul Bahri TNH, Wagiran H, Hussin R, Saeed MA, Hossain I, Ali H, (2014). Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations. Nucl. Instrum. Methods B 336, 70-73.
Year 2016, Volume: 6 Issue: 1, 7 - 12, 30.06.2016
https://doi.org/10.17678/beujst.07046

Abstract

References

  • Atomic weight softh elements, IUPAC, 2007, The table is based on the 2005 table at Pure Appl. Chem. 78 (2006) 2051-2066 with 2007 changes to the values forlutetium, molybdenum, nickel, ytterbium and zinc. /http://www. chem.qmul.ac.uk/iupac/AtWt/S.
  • El-Kateb AH, Rizk R, Abdul-Kader AM (2000). Determination of atomic cross- sections and effective atomic numbers for some alloys. Ann. Nucl. Energy 27,1333-1343.
  • Gowda S, Krishnaveni S, Gowna R (2005). Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instr. Methods B 239, 361-369.
  • Gowda S, Krishnaveni S, Yashoda T, Umesh TK, Gowda R (2004). Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Parmana 63, 529-531.
  • Hine GJ (1952). The effective atomic numbers of materials for various gamma interactions. Physics Review 85, 725-737.
  • İçelli O, Erzeneoglu S, Karahan İH, Cankaya G (2005). Effective atomic numbers for CoCuNi alloys using transmission experiments. JQSRT 91, 485–491.
  • İçelli O (2006). Practical method for experimental effective atomic number in the coherent to Compton scattering ratio. Journal of Quantitative Spectroscopy and Radiative Transfer 101, 151-158.
  • Kaewkhao J, Laopaiboon J, Chewpraditkul W (2008). Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. JQSRT 109, 1260-1265.
  • Kaewkhao J, Limsuwan P (2010). Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl. Instr. Methods Phys. Res. A 619, 295-297.
  • Kirdsiri K, Kaewkhao J, Pokaipisit A, Chewpraditkul W, Limsuwan P (2009). Gamma-rays shielding properties of xPbO:(100 Àx)B2O3 glasses system at 662 keV. Ann. Nucl. Energy 36, 1360-1365.
  • Kurudirek M, Büyükyıldız M, Özdemir Y (2010). Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV-100 GeV. Nucl. Instrum. Methods B 613, 251-256.
  • Kurudirek M (2014a). Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV–10 GeV. Nucl. Instrum. Methods B 336, 130-134.
  • Kurudirek M (2014b). Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiation Physics and Chemistry 102, 139-146.
  • Kurudirek M. and Kurudirek SV (2015). Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: Effective atomic number and electron density. Applied Radiation and Isotopes. 99, 54.
  • Manohara SR, Hanagodimath SM, Gerward L (2009). Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater 393, 465-472.
  • Manohara SR, Hanagodimath SM (2007). Studies on effective atomic numbers and electron densities of essential amino acids in the energy range in energy range 1 keV-100 GeV. Nucl Instrum. Methods B 258, 321-328.
  • Manohara SR, Hanagodimath SM, Thind KS, Gerward L (2008). On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl Instrum. Methods B 266, 3906-3912.
  • Murty VRK (2004). Effective atomic numbers for W/Cu alloy for total photon attenuation. Radiat. Phys. Chem 71, 667-669.
  • Niranjan RS, Rudraswamy B, Dhananjayan N (2012). Effective atomic number, electron density and kerma of gamma radiation for oxides of lanthanides. Pramana J. Phys. 78, 451-458.
  • Önder P, Tursucu A, Demir D, Gürol A (2012). Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds. Nucl. Instrum. Methods B 292, 1-10.
  • Shivaramu V. Ramprasath (2000). Effective atomic numbers for photon energy absorption and energy dependence of some hermoluminescent dosimetric compounds. Nucl. Instrum. Methods B 168, 294-304.
  • Singh G, Kumar Gupta M, Dhaliwal AS, Kahlon KS (2015). Measurement of attenuation coefficient, effective atomic number and electron density of oxides of lanthanides by using simplified ATM-method. Journal of Alloys and Compounds 619, 356-360.
  • Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005). Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat. Phys. Chem. 72, 225–228.
  • Singh K, Singh H, Sharma V, Nathuram R, Khanna A, Kumar R, Bhatti SS, Sahota HS (2002). Gamma-ray attenuation coefficients in bismuth borate Glasses, Nucl. Instrum Methods B 194, 1-6.
  • Tengku Kamarul Bahri TNH, Wagiran H, Hussin R, Saeed MA, Hossain I, Ali H, (2014). Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations. Nucl. Instrum. Methods B 336, 70-73.
There are 25 citations in total.

Details

Journal Section Articles
Authors

Mehmet Büyükyıldız

Publication Date June 30, 2016
Submission Date January 10, 2016
Published in Issue Year 2016 Volume: 6 Issue: 1

Cite

IEEE M. Büyükyıldız, “Effective atomic numbers and electron densities for some lanthanide oxide compounds using direct method in the energy region of 1 keV - 20 MeV”, Bitlis Eren University Journal of Science and Technology, vol. 6, no. 1, pp. 7–12, 2016, doi: 10.17678/beujst.07046.