Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 1, 33 - 45, 30.06.2025
https://doi.org/10.51539/biotech.1702926

Abstract

References

  • Ammerman SM (2017). The Evolution of Animals through Domestication and other Human Relationships: An Animal-Centered Approach (Doctoral dissertation, UCLA).
  • Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32: 511-517 doi.org/10.1093/bioinformatics/btv639
  • Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11: 1484-1502 doi.org/10.1101/gr.182801
  • Authority EFS (2024) The European Union One Health 2023 Zoonoses report. EFSA J 22: 9106 doi.org/10.2903/j.efsa.2024.9106
  • Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Cukura A, Denny P, Dogan T (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51: 523-531 doi.org/10.1093/nar/gkac1052
  • Beauruelle C, Plouzeau C, Grillon A, Isnard C, Corvec S, Degand N, Jacquier H, Amara M, Mizrahi A, Diedrich T, Piau C, Farfour E, Bonzon L, Le Brun C, Walewski V, Bille E, Dortet L, Guillard T, Soismier N, Le Guen R, Morand P, de Ponfilly GP, Le Monnier A, Le Monnier A, Héry-Arnaud G (2022) Capnocytophaga zoonotic infections: a 10-year retrospective study (the French CANCAN study). Eur J Clin Microbiol Infect Dis 41: 581-588 doi.org/10.1007/s10096-022-04402-x
  • Bobo RA, Newton EJ (1976) A previously undescribed gram-negative bacillus causing septicemia and meningitis. Am J Clin Pathol 65: 564-569 doi.org/10.1093/ajcp/65.4.564
  • Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ (2024) Vaccine process technology—A decade of progress. Biotechnol Bioeng doi.org/10.1002/bit.28703
  • Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7: 1-5 doi.org/10.1186/1471-2105-7-153
  • Butler T (2015) Capnocytophaga canimorsus : an emerging cause of sepsis, meningitis, and post-splenectomy infection after dog bites. Eur J Clin Microbiol Infect Dis 34: 1271-1280 doi.org/10.1007/s10096-015-2360-7
  • Calado CR (2022) Antigenic and conserved peptides from diverse Helicobacter pylori antigens. Biotechnol Lett 44: 535-545 doi.org/10.1007/s10529-022-03238-x
  • Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Keşmir C, Peters B (2013) Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 9:1003266 doi.org/10.1371/journal.pcbi.1003266 Coudert E, Gehant S, De Castro E, Pozzato M, Baratin D, Neto T, Sigrist CJ, Redaschi N, Bridge A (2023) Annotation of biologically relevant ligands in UniProtKB using ChEBI Bioinformatics 39: 793 doi.org/10.1093/bioinformatics/btac793
  • Cusick MF, Libbey JE, Fujinami RS (2012) Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 42: 102-111 doi.org/10.1007/s12016-011-8294-7
  • Damas MSF, Mazur FG, Freire CCDM, Cunha AFD, Pranchevicius MCDS (2022) A systematic immuno-informatic approach to design a multiepitope-based vaccine against emerging multiple drug resistant serratia marcescens. Front Immunol 13: 768569 doi.org/10.3389/fimmu.2022.768569
  • De Tiège A, Verpooten J, Braeckman J (2021) From animal signals to art: manipulative animal signaling and the evolutionary foundations of aesthetic behavior and art production. Q Rev Biol 96: 1-27 doi.org/10.1086/713210
  • Desvars-Larrive A, Vogl AE, Puspitarani GA, Yang L, Joachim A, Käsbohrer A (2024) A One Health framework for exploring zoonotic interactions demonstrated through a case study. Nat Commun15: 5650 doi.org/ 10.1038/s41467-024-49967-7
  • Dimitrov I, Zaharieva N, Doytchinova, I (2020) Bacterial immunogenicity prediction by machine learning methods. Vaccines 8: 709 doi.org/10.3390/vaccines8040709
  • Dogbey G, Dugah A, Abbiw RK, Agbolosu A, Asare-Dompreh K, Odoom T, Okine A, Amakye-Anim J, Otsyina HR, Enyetornye B (2024) Impact of COVID-19 on pets and pet owners: A survey conducted in selected veterinary clinics in Accra, Ghana. Heliyon 10 doi.org/ 10.1016/j.heliyon.2024.e37328
  • Esposito MM, Turku S, Lehrfield L, Shoman A (2023) The impact of human activities on zoonotic infection transmissions. Anim 13: 1646 doi.org/10.3390/ani13101646
  • Fiers MW, Kleter GA, Nijland H, Peijnenburg AA, Nap JP, Van Ham RC (2004) Allermatch™, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics 5: 1-6 doi.org/10.1186/1471-2105-5-133
  • Galibert F, Quignon P, Hitte C, André C (2011) Toward understanding dog evolutionary and domestication history. C R Biol 334: 190-196 doi.org/10.1016/j.crvi.2010.12.011
  • Galles A, Monlun E, Villeneuve L, Poirot-Mazères S (2020) Méningite à Capnocytophaga canimorsus. Med Mal Infect 50: 754-756 doi.org/10.1016/j.medmal.2020.09.001
  • Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH (2021) Novel approaches for vaccine development. Cell 184: 1589-1603 doi.org/10.1016/j.cell.2021.02.030
  • Gonzalez-Galarza FF, McCabe A, Santos, EJMD, Jones J, Takeshita L, Ortega-Rivera N D, Cid-Pavon G M D, Ramsbottom K, Ghattaoraya G, Alfirevic A, Middleton D, Jones A R (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48: 783-788 doi.org/10.1093/nar/gkz1029
  • Hannon DM, Harkin E, Donnachie K, Sibartie S, Doyle M, Chan G (2020) A case of Capnocytophaga canimorsus meningitis and bacteraemia. Ir J Med Sci 189: 251-252 doi.org/10.1007/s11845-019-02045-0
  • Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C (2021) Host diversity and potential transmission pathways of SARS-CoV-2 at the human-animal interface. Pathog 10: 180 doi.org/10.3390/pathogens10020180 Ho J, Hussain S, Sparagano O (2021) Did the COVID-19 pandemic spark a public interest in pet adoption?. Front Vet Sci 8: 647308 doi.org/10.3389/fvets.2021.647308
  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45: 24-29 doi.org/10.1093/nar/gkx346
  • Jolivet-Gougeon A, Sixou JL, Tamanai-Shacoori Z, Bonnaure-Mallet M (2007) Antimicrobial treatment of Capnocytophaga infections. Int J Antimicrob Agent 29: 367-373 doi.org/10.1016/j.ijantimicag.2006.10.005
  • Jumper, J, Evans R, Pritzel A, Green, T, Figurnov M, Ronneberger, O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Black T, Pretersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D 2021 Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589
  • Ko AI, Goarant C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736-747 doi.org/10.1038/nrmicro2208
  • Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276: 172-174 doi.org/10.1016/0014-5793(90)80535-Q
  • Krishnan S, Joshi A, Akhtar N, Kaushik V (2021) Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 150: 104728 doi.org/10.1016/j.micpath.2020.104728
  • Kushwaha V, Prabha A, Sharma V, Devi A, Ramniwas S, Sharma A, Sharma AK, Sheikh I, Panwar A, Kaur D (2024) Immunoinformatics: computational keys to immune system secrets. Bioinform Drug Discov 123 doi.org/10.1515/9783111568584-007
  • Lee K, McGregor S, Strowd L (2020) Noninflammatory Retiform Purpura: Answer. Am J Dermatopathol 42: 893-894 doi.org/10.1097/DAD.0000000000001552
  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8: 1-12 doi.org/10.1186/1471-2105-8-424
  • Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2: 1-7 doi.org/10.1186/1745-7580-2-2
  • Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6: 291 doi.org/10.1038/s41392-021-00687-0
  • Lion C, Escande F, Burdin JC (1996) Capnocytophaga canimorsus infections in human: review of the literature and cases report. Eur J Epidemiol 12: 521-533 doi.org/10.1007/BF00144007
  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36: 509-512 doi.org/10.1093/nar/gkn202
  • Mader N, Luehrs F, Langenbeck M, Herget-Rosenthal S (2020) Capnocytophaga canimorsus–a potent pathogen in immunocompetent humans–systematic review and retrospective observational study of case reports. Infect Dis 52: 65-74 doi.org/10.1080/23744235.2019.1687933
  • Masum MHU, Wajed S, Hossain MI, Moumi NR, Talukder A, Rahman MM (2024) An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches. PLoS One 19: 0305413 doi.org/10.1371/journal.pone.0305413
  • Meyer EC, Alt-Epping S, Moerer O, Büttner B (2021) Fatal septic shock due to Capnocytophaga canimorsus bacteremia masquerading as COVID-19 pneumonia-a case report. BMC Infect Dis 21: 1-6 doi.org/10.1186/s12879-021-06422-y
  • Nielsen M, Lundegaard C, Lund O, Keşmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenet 57: 33-41 doi.org/10.1007/s00251-005-0781-7
  • Oltenacu EAB (2004) Domestication of animals. Encycl Anim Sci 294-296
  • O'Riordan, F Ronayne A, Jackson A (2021) Capnocytophaga canimorsus meningitis and bacteraemia without a dog bite in an immunocompetent individual. BMJ Case Rep 14: 242432 doi.org/10.1136/bcr-2021-242432
  • Ortega-Tirado D, Arvizu-Flores AA, Velazquez C, Garibay-Escobar A (2020) The role of immunoinformatics in the development of T-cell peptide-based vaccines against Mycobacterium tuberculosis. Expert Rev Vaccines 19: 831-841 doi.org/10.1080/14760584.2020.1825950
  • Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y (2018) A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 97: 422-441 doi.org/10.1016/j.ejcb.2018.06.003
  • Parisi X, Pihán G (2023) Purpura fulminans due to Capnocytophaga canimorsus. Br J Haematol 202 doi.org/10.1111/bjh.18837.
  • Pati R, Shevtsov M, Sonawane A (2018) Nanoparticle vaccines against infectious diseases. Front Immunol 9: 2224 doi.org/10.3389/fimmu.2018.02224
  • Pieracci EG, Williams CE, Wallace RM, Kalapura CR, Brown CM (2021) US dog importations during the COVID-19 pandemic: Do we have an erupting problem?. PLoS One, 16: 0254287 doi.org/10.1371/journal.pone.0254287
  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9: 1-8. doi.org/10.1186/1471-2105-9-514
  • Popiel KY, Vinh DC (2013) ‘Bobo-Newton syndrome’: An unwanted gift from man’s best friend. Can J Infect Dis Med Microbiol 24: 209 doi.org/10.1155/2013/930158
  • Powell L, Lavender TM, Reinhard CL, Watson B (2022) Pet Owners’ Perceptions of COVID-19, zoonotic disease, and veterinary medicine: The impact of demographic characteristics. Vet Sci 9: 195 doi.org/10.3390/vetsci9050195
  • Rees EM, Minter A, Edmunds WJ, Lau CL, Kucharski AJ, Lowe R (2021) Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. Lancet Planet Health 5: 466-478 doi.org/10.1016/S2542-5196(21)00137-6
  • Repac J, Mandić M, Lunić T, Božić B, Božić Nedeljković B (2021) Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis—A systematic immunoinformatics analysis of T cell epitopes. PLoS One 16: 0253918 doi.org/10.1371/journal.pone.0253918
  • Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34: 202-209 doi.org/10.1093/nar/gkl343
  • Saha S, Raghava GPS (2006) Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins:Struct Funct Bioinf 65: 40-48 doi.org/10.1002/prot.21078
  • Saklani S, Barsola, B, Pathania D, Sonu S, Kumari P, Singh P, Taha BA, Rustagi S, Thakur P, Narayan M, Chaudhary V (2024) Nanomaterials-integrated electrochemical biosensors as pioneering solutions for zoonotic disease diagnosis. J Electrochem Soc171: 087502 doi.org/10.1149/1945-7111/ad65bb
  • Sandoe JA (2004) Capnocytophaga canimorsus endocarditis. J Med Microbiol 53: 245-248 doi.org/10.1099/jmm.0.05274-0
  • Schleidt WM, Shalter MD (2003) Co-evolution of humans and canids. Evol Cogn 9: 57-72
  • Shamakhi A, Kordbacheh E (2021) Immunoinformatic design of an epitope-based immunogen candidate against Bacillus anthracis. Inform Med Unlocked 24: 100574 doi.org/10.1016/j.imu.2021.100574
  • Shin H, Mally M, Kuhn M, Paroz C, Cornelis GR (2007) Escape from immune surveillance by Capnocytophaga canimorsus. J Infect Dis 195: 375-386 doi.org/10.1086/510243
  • Silva DN, Chrobok M, Ahlén G, Blomberg P, Sällberg M, Pasetto A (2022) ATMP development and pre-GMP environment in academia: a safety net for early cell and gene therapy development and manufacturing. Immuno-Oncol Technol 16: 100099 doi.org/10.1016/j.iotech.2022.100099
  • Sunita, Sajid, A., Singh, Y. and Shukla, P., 2020. Computational tools for modern vaccine development. Hum. Vaccines Immunother. 16: 723-735 doi.org/10.1080/21645515.2019.1670035
  • Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40: 1023-1025 doi.org/10.1038/s41587-021-01156-3
  • Umeda K, Suzuki M, Imaoka K (2024) Investigation of antimicrobial susceptibility and resistance gene prevalence in Capnocytophaga spp. isolated from dogs and cats and characterization of novel class A β-lactamase CST-1. Eur J Clin Microbiol Infect Dis 1-11 doi.org/10.1007/s10096-024-05025-0
  • Van Dam AP, Jansz A (2011) Capnocytophaga canimorsus infections in The Netherlands: a nationwide survey. Clin Microbiol Infect 17: 312-315 doi.org/10.1111/j.1469-0691.2010.03195.x
  • Van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D (2016) Capnocytophaga canimorsus meningitis: three cases and a review of the literature. Zoonoses Public Health 63: 442-448 doi.org/10.1111/zph.12248
  • Vigne JD, Guilaine J, Debue K, Haye L, Gérard P (2004) Early taming of the cat in Cyprus. Science 304: 259-259 doi.org/10.1126/science.1095335.
  • Vinusha V, Girish C (2024) Discovering vaccines: the trial tale. Naunyn-Schmiedeb. Arch Pharmacol 1-15 doi.org/10.1007/s00210-024-03368-1
  • Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computut Biol 4: 1000048 doi.org/10.1371/journal.pcbi.1000048
  • Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:1-12. doi.org/10.1186/1471-2105-11-568
  • Wang P (2021) Natural and synthetic saponins as vaccine adjuvants vaccines 2021: 9, 222 doi.org/10.3390/vaccines9030222
  • Warimwe GM, Francis MJ, Bowden TA, Thumbi SM, Charleston B (2021) Using cross-species vaccination approaches to counter emerging infectious diseases. Nat Rev Immunol 21: 815-822 doi.org/10.1038/s41577-021-00567-2
  • Yang MC, Ling J, Mosaed S (2021) Capnocytophaga canimorsus blebitis: case report and review of literature. BMC Ophthalmol 21:1-5 doi.org/10.1186/s12886-021-01823-8
  • Yurina V, Adianingsih OR (2022) Predicting epitopes for vaccine development using bioinformatics tools. Ther Adv Vaccines Immunother 10: 25151355221100218 doi.org/10.1177/25151355221100218
  • Zaharieva N, Dimitrov I, Flower DR, Doytchinova I (2019) VaxiJen dataset of bacterial immunogens: an update. Curr Comput-Aided Drug Des 15: 398-400. doi.org/10.2174/1573409915666190318121838
  • Zaharieva N, Dimitrov I, Flower D, Doytchinova I (2017) Immunogenicity prediction by VaxiJen: a ten year overview. J Proteom Bioinform 10: 10-4172 doi.org/10.4172/jpb.1000454
  • Zajkowska J, Król M, Falkowski D, Syed N, Kamieńska A (2016) Capnocytophaga canimorsus–an underestimated danger after dog or cat bite–review of literature. Prz Epidemiol 70: 289-295

Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches

Year 2025, Volume: 6 Issue: 1, 33 - 45, 30.06.2025
https://doi.org/10.51539/biotech.1702926

Abstract

Immunoinformatics has provided an important contribution to the acceleration of vaccine research. The in silico tools developed under immunoinformatics efficiently filter candidate vaccines and select the most appropriate ones for in vitro and in vivo studies. Multi epitope-based vaccine design against Capnocytophaga canimorsus infections through immunoinformatics approaches was proposed in the present investigation. Outer membrane protein (OMP) of C. canimorsus was used to develop peptide-based vaccines. IEDB tools are used in this research. The antigenic potential of C. canimorsus OMP was evaluated via VaxiJen v2.0 and the Overall Prediction for the Protective Antigen was found to be 0.6049. MHC-I and -II binding epitopes with maximum scores were found to be “QEIGKLKKY” for HLAB*44:03 and “FNAVQEIGK” for HLA-DRB5*01:01, respectively. ABCPrep analysis identified multiple epitopes. The maximum score of 0.91 was associated with the sequence “KNMRIGYVDMDFILEN”. Discontinuous epitopes were also detected in this research with the maximum score observed for the regions A:L247, A:E248, A:Q250 and A:K251. The population coverage for the global population was calculated to be 96.45% for a defined set of epitopes. In conclusion, since the adoption of dogs and cats as pets has increased after COVID-19, there is a clear risk for C. canimorsus infections. The proposed peptide-based vaccines in this report may mitigate this risk on a global level.

References

  • Ammerman SM (2017). The Evolution of Animals through Domestication and other Human Relationships: An Animal-Centered Approach (Doctoral dissertation, UCLA).
  • Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32: 511-517 doi.org/10.1093/bioinformatics/btv639
  • Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11: 1484-1502 doi.org/10.1101/gr.182801
  • Authority EFS (2024) The European Union One Health 2023 Zoonoses report. EFSA J 22: 9106 doi.org/10.2903/j.efsa.2024.9106
  • Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Cukura A, Denny P, Dogan T (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51: 523-531 doi.org/10.1093/nar/gkac1052
  • Beauruelle C, Plouzeau C, Grillon A, Isnard C, Corvec S, Degand N, Jacquier H, Amara M, Mizrahi A, Diedrich T, Piau C, Farfour E, Bonzon L, Le Brun C, Walewski V, Bille E, Dortet L, Guillard T, Soismier N, Le Guen R, Morand P, de Ponfilly GP, Le Monnier A, Le Monnier A, Héry-Arnaud G (2022) Capnocytophaga zoonotic infections: a 10-year retrospective study (the French CANCAN study). Eur J Clin Microbiol Infect Dis 41: 581-588 doi.org/10.1007/s10096-022-04402-x
  • Bobo RA, Newton EJ (1976) A previously undescribed gram-negative bacillus causing septicemia and meningitis. Am J Clin Pathol 65: 564-569 doi.org/10.1093/ajcp/65.4.564
  • Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ (2024) Vaccine process technology—A decade of progress. Biotechnol Bioeng doi.org/10.1002/bit.28703
  • Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7: 1-5 doi.org/10.1186/1471-2105-7-153
  • Butler T (2015) Capnocytophaga canimorsus : an emerging cause of sepsis, meningitis, and post-splenectomy infection after dog bites. Eur J Clin Microbiol Infect Dis 34: 1271-1280 doi.org/10.1007/s10096-015-2360-7
  • Calado CR (2022) Antigenic and conserved peptides from diverse Helicobacter pylori antigens. Biotechnol Lett 44: 535-545 doi.org/10.1007/s10529-022-03238-x
  • Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Keşmir C, Peters B (2013) Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol 9:1003266 doi.org/10.1371/journal.pcbi.1003266 Coudert E, Gehant S, De Castro E, Pozzato M, Baratin D, Neto T, Sigrist CJ, Redaschi N, Bridge A (2023) Annotation of biologically relevant ligands in UniProtKB using ChEBI Bioinformatics 39: 793 doi.org/10.1093/bioinformatics/btac793
  • Cusick MF, Libbey JE, Fujinami RS (2012) Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 42: 102-111 doi.org/10.1007/s12016-011-8294-7
  • Damas MSF, Mazur FG, Freire CCDM, Cunha AFD, Pranchevicius MCDS (2022) A systematic immuno-informatic approach to design a multiepitope-based vaccine against emerging multiple drug resistant serratia marcescens. Front Immunol 13: 768569 doi.org/10.3389/fimmu.2022.768569
  • De Tiège A, Verpooten J, Braeckman J (2021) From animal signals to art: manipulative animal signaling and the evolutionary foundations of aesthetic behavior and art production. Q Rev Biol 96: 1-27 doi.org/10.1086/713210
  • Desvars-Larrive A, Vogl AE, Puspitarani GA, Yang L, Joachim A, Käsbohrer A (2024) A One Health framework for exploring zoonotic interactions demonstrated through a case study. Nat Commun15: 5650 doi.org/ 10.1038/s41467-024-49967-7
  • Dimitrov I, Zaharieva N, Doytchinova, I (2020) Bacterial immunogenicity prediction by machine learning methods. Vaccines 8: 709 doi.org/10.3390/vaccines8040709
  • Dogbey G, Dugah A, Abbiw RK, Agbolosu A, Asare-Dompreh K, Odoom T, Okine A, Amakye-Anim J, Otsyina HR, Enyetornye B (2024) Impact of COVID-19 on pets and pet owners: A survey conducted in selected veterinary clinics in Accra, Ghana. Heliyon 10 doi.org/ 10.1016/j.heliyon.2024.e37328
  • Esposito MM, Turku S, Lehrfield L, Shoman A (2023) The impact of human activities on zoonotic infection transmissions. Anim 13: 1646 doi.org/10.3390/ani13101646
  • Fiers MW, Kleter GA, Nijland H, Peijnenburg AA, Nap JP, Van Ham RC (2004) Allermatch™, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics 5: 1-6 doi.org/10.1186/1471-2105-5-133
  • Galibert F, Quignon P, Hitte C, André C (2011) Toward understanding dog evolutionary and domestication history. C R Biol 334: 190-196 doi.org/10.1016/j.crvi.2010.12.011
  • Galles A, Monlun E, Villeneuve L, Poirot-Mazères S (2020) Méningite à Capnocytophaga canimorsus. Med Mal Infect 50: 754-756 doi.org/10.1016/j.medmal.2020.09.001
  • Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH (2021) Novel approaches for vaccine development. Cell 184: 1589-1603 doi.org/10.1016/j.cell.2021.02.030
  • Gonzalez-Galarza FF, McCabe A, Santos, EJMD, Jones J, Takeshita L, Ortega-Rivera N D, Cid-Pavon G M D, Ramsbottom K, Ghattaoraya G, Alfirevic A, Middleton D, Jones A R (2020) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 48: 783-788 doi.org/10.1093/nar/gkz1029
  • Hannon DM, Harkin E, Donnachie K, Sibartie S, Doyle M, Chan G (2020) A case of Capnocytophaga canimorsus meningitis and bacteraemia. Ir J Med Sci 189: 251-252 doi.org/10.1007/s11845-019-02045-0
  • Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C (2021) Host diversity and potential transmission pathways of SARS-CoV-2 at the human-animal interface. Pathog 10: 180 doi.org/10.3390/pathogens10020180 Ho J, Hussain S, Sparagano O (2021) Did the COVID-19 pandemic spark a public interest in pet adoption?. Front Vet Sci 8: 647308 doi.org/10.3389/fvets.2021.647308
  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45: 24-29 doi.org/10.1093/nar/gkx346
  • Jolivet-Gougeon A, Sixou JL, Tamanai-Shacoori Z, Bonnaure-Mallet M (2007) Antimicrobial treatment of Capnocytophaga infections. Int J Antimicrob Agent 29: 367-373 doi.org/10.1016/j.ijantimicag.2006.10.005
  • Jumper, J, Evans R, Pritzel A, Green, T, Figurnov M, Ronneberger, O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Black T, Pretersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D 2021 Highly accurate protein structure prediction with AlphaFold. Nature 596: 583-589
  • Ko AI, Goarant C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736-747 doi.org/10.1038/nrmicro2208
  • Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276: 172-174 doi.org/10.1016/0014-5793(90)80535-Q
  • Krishnan S, Joshi A, Akhtar N, Kaushik V (2021) Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog 150: 104728 doi.org/10.1016/j.micpath.2020.104728
  • Kushwaha V, Prabha A, Sharma V, Devi A, Ramniwas S, Sharma A, Sharma AK, Sheikh I, Panwar A, Kaur D (2024) Immunoinformatics: computational keys to immune system secrets. Bioinform Drug Discov 123 doi.org/10.1515/9783111568584-007
  • Lee K, McGregor S, Strowd L (2020) Noninflammatory Retiform Purpura: Answer. Am J Dermatopathol 42: 893-894 doi.org/10.1097/DAD.0000000000001552
  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8: 1-12 doi.org/10.1186/1471-2105-8-424
  • Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2: 1-7 doi.org/10.1186/1745-7580-2-2
  • Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6: 291 doi.org/10.1038/s41392-021-00687-0
  • Lion C, Escande F, Burdin JC (1996) Capnocytophaga canimorsus infections in human: review of the literature and cases report. Eur J Epidemiol 12: 521-533 doi.org/10.1007/BF00144007
  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36: 509-512 doi.org/10.1093/nar/gkn202
  • Mader N, Luehrs F, Langenbeck M, Herget-Rosenthal S (2020) Capnocytophaga canimorsus–a potent pathogen in immunocompetent humans–systematic review and retrospective observational study of case reports. Infect Dis 52: 65-74 doi.org/10.1080/23744235.2019.1687933
  • Masum MHU, Wajed S, Hossain MI, Moumi NR, Talukder A, Rahman MM (2024) An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches. PLoS One 19: 0305413 doi.org/10.1371/journal.pone.0305413
  • Meyer EC, Alt-Epping S, Moerer O, Büttner B (2021) Fatal septic shock due to Capnocytophaga canimorsus bacteremia masquerading as COVID-19 pneumonia-a case report. BMC Infect Dis 21: 1-6 doi.org/10.1186/s12879-021-06422-y
  • Nielsen M, Lundegaard C, Lund O, Keşmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenet 57: 33-41 doi.org/10.1007/s00251-005-0781-7
  • Oltenacu EAB (2004) Domestication of animals. Encycl Anim Sci 294-296
  • O'Riordan, F Ronayne A, Jackson A (2021) Capnocytophaga canimorsus meningitis and bacteraemia without a dog bite in an immunocompetent individual. BMJ Case Rep 14: 242432 doi.org/10.1136/bcr-2021-242432
  • Ortega-Tirado D, Arvizu-Flores AA, Velazquez C, Garibay-Escobar A (2020) The role of immunoinformatics in the development of T-cell peptide-based vaccines against Mycobacterium tuberculosis. Expert Rev Vaccines 19: 831-841 doi.org/10.1080/14760584.2020.1825950
  • Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y (2018) A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 97: 422-441 doi.org/10.1016/j.ejcb.2018.06.003
  • Parisi X, Pihán G (2023) Purpura fulminans due to Capnocytophaga canimorsus. Br J Haematol 202 doi.org/10.1111/bjh.18837.
  • Pati R, Shevtsov M, Sonawane A (2018) Nanoparticle vaccines against infectious diseases. Front Immunol 9: 2224 doi.org/10.3389/fimmu.2018.02224
  • Pieracci EG, Williams CE, Wallace RM, Kalapura CR, Brown CM (2021) US dog importations during the COVID-19 pandemic: Do we have an erupting problem?. PLoS One, 16: 0254287 doi.org/10.1371/journal.pone.0254287
  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9: 1-8. doi.org/10.1186/1471-2105-9-514
  • Popiel KY, Vinh DC (2013) ‘Bobo-Newton syndrome’: An unwanted gift from man’s best friend. Can J Infect Dis Med Microbiol 24: 209 doi.org/10.1155/2013/930158
  • Powell L, Lavender TM, Reinhard CL, Watson B (2022) Pet Owners’ Perceptions of COVID-19, zoonotic disease, and veterinary medicine: The impact of demographic characteristics. Vet Sci 9: 195 doi.org/10.3390/vetsci9050195
  • Rees EM, Minter A, Edmunds WJ, Lau CL, Kucharski AJ, Lowe R (2021) Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. Lancet Planet Health 5: 466-478 doi.org/10.1016/S2542-5196(21)00137-6
  • Repac J, Mandić M, Lunić T, Božić B, Božić Nedeljković B (2021) Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis—A systematic immunoinformatics analysis of T cell epitopes. PLoS One 16: 0253918 doi.org/10.1371/journal.pone.0253918
  • Saha S, Raghava GPS (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34: 202-209 doi.org/10.1093/nar/gkl343
  • Saha S, Raghava GPS (2006) Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins:Struct Funct Bioinf 65: 40-48 doi.org/10.1002/prot.21078
  • Saklani S, Barsola, B, Pathania D, Sonu S, Kumari P, Singh P, Taha BA, Rustagi S, Thakur P, Narayan M, Chaudhary V (2024) Nanomaterials-integrated electrochemical biosensors as pioneering solutions for zoonotic disease diagnosis. J Electrochem Soc171: 087502 doi.org/10.1149/1945-7111/ad65bb
  • Sandoe JA (2004) Capnocytophaga canimorsus endocarditis. J Med Microbiol 53: 245-248 doi.org/10.1099/jmm.0.05274-0
  • Schleidt WM, Shalter MD (2003) Co-evolution of humans and canids. Evol Cogn 9: 57-72
  • Shamakhi A, Kordbacheh E (2021) Immunoinformatic design of an epitope-based immunogen candidate against Bacillus anthracis. Inform Med Unlocked 24: 100574 doi.org/10.1016/j.imu.2021.100574
  • Shin H, Mally M, Kuhn M, Paroz C, Cornelis GR (2007) Escape from immune surveillance by Capnocytophaga canimorsus. J Infect Dis 195: 375-386 doi.org/10.1086/510243
  • Silva DN, Chrobok M, Ahlén G, Blomberg P, Sällberg M, Pasetto A (2022) ATMP development and pre-GMP environment in academia: a safety net for early cell and gene therapy development and manufacturing. Immuno-Oncol Technol 16: 100099 doi.org/10.1016/j.iotech.2022.100099
  • Sunita, Sajid, A., Singh, Y. and Shukla, P., 2020. Computational tools for modern vaccine development. Hum. Vaccines Immunother. 16: 723-735 doi.org/10.1080/21645515.2019.1670035
  • Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40: 1023-1025 doi.org/10.1038/s41587-021-01156-3
  • Umeda K, Suzuki M, Imaoka K (2024) Investigation of antimicrobial susceptibility and resistance gene prevalence in Capnocytophaga spp. isolated from dogs and cats and characterization of novel class A β-lactamase CST-1. Eur J Clin Microbiol Infect Dis 1-11 doi.org/10.1007/s10096-024-05025-0
  • Van Dam AP, Jansz A (2011) Capnocytophaga canimorsus infections in The Netherlands: a nationwide survey. Clin Microbiol Infect 17: 312-315 doi.org/10.1111/j.1469-0691.2010.03195.x
  • Van Samkar A, Brouwer MC, Schultsz C, van der Ende A, van de Beek D (2016) Capnocytophaga canimorsus meningitis: three cases and a review of the literature. Zoonoses Public Health 63: 442-448 doi.org/10.1111/zph.12248
  • Vigne JD, Guilaine J, Debue K, Haye L, Gérard P (2004) Early taming of the cat in Cyprus. Science 304: 259-259 doi.org/10.1126/science.1095335.
  • Vinusha V, Girish C (2024) Discovering vaccines: the trial tale. Naunyn-Schmiedeb. Arch Pharmacol 1-15 doi.org/10.1007/s00210-024-03368-1
  • Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computut Biol 4: 1000048 doi.org/10.1371/journal.pcbi.1000048
  • Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:1-12. doi.org/10.1186/1471-2105-11-568
  • Wang P (2021) Natural and synthetic saponins as vaccine adjuvants vaccines 2021: 9, 222 doi.org/10.3390/vaccines9030222
  • Warimwe GM, Francis MJ, Bowden TA, Thumbi SM, Charleston B (2021) Using cross-species vaccination approaches to counter emerging infectious diseases. Nat Rev Immunol 21: 815-822 doi.org/10.1038/s41577-021-00567-2
  • Yang MC, Ling J, Mosaed S (2021) Capnocytophaga canimorsus blebitis: case report and review of literature. BMC Ophthalmol 21:1-5 doi.org/10.1186/s12886-021-01823-8
  • Yurina V, Adianingsih OR (2022) Predicting epitopes for vaccine development using bioinformatics tools. Ther Adv Vaccines Immunother 10: 25151355221100218 doi.org/10.1177/25151355221100218
  • Zaharieva N, Dimitrov I, Flower DR, Doytchinova I (2019) VaxiJen dataset of bacterial immunogens: an update. Curr Comput-Aided Drug Des 15: 398-400. doi.org/10.2174/1573409915666190318121838
  • Zaharieva N, Dimitrov I, Flower D, Doytchinova I (2017) Immunogenicity prediction by VaxiJen: a ten year overview. J Proteom Bioinform 10: 10-4172 doi.org/10.4172/jpb.1000454
  • Zajkowska J, Król M, Falkowski D, Syed N, Kamieńska A (2016) Capnocytophaga canimorsus–an underestimated danger after dog or cat bite–review of literature. Prz Epidemiol 70: 289-295
There are 79 citations in total.

Details

Primary Language English
Subjects Bacteriology, Basic Immunology, Veterinary Microbiology
Journal Section Research Article
Authors

Levent Çavaş

Atakan Vatansever 0009-0002-0187-6453

Submission Date May 20, 2025
Acceptance Date June 29, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Çavaş, L., & Vatansever, A. (2025). Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches. Bulletin of Biotechnology, 6(1), 33-45. https://doi.org/10.51539/biotech.1702926
AMA Çavaş L, Vatansever A. Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches. Bull. Biotechnol. June 2025;6(1):33-45. doi:10.51539/biotech.1702926
Chicago Çavaş, Levent, and Atakan Vatansever. “Multi Epitope Based Vaccine Design Against Capnocytophaga Canimorsus through Immunoinformatics Approaches”. Bulletin of Biotechnology 6, no. 1 (June 2025): 33-45. https://doi.org/10.51539/biotech.1702926.
EndNote Çavaş L, Vatansever A (June 1, 2025) Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches. Bulletin of Biotechnology 6 1 33–45.
IEEE L. Çavaş and A. Vatansever, “Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches”, Bull. Biotechnol., vol. 6, no. 1, pp. 33–45, 2025, doi: 10.51539/biotech.1702926.
ISNAD Çavaş, Levent - Vatansever, Atakan. “Multi Epitope Based Vaccine Design Against Capnocytophaga Canimorsus through Immunoinformatics Approaches”. Bulletin of Biotechnology 6/1 (June2025), 33-45. https://doi.org/10.51539/biotech.1702926.
JAMA Çavaş L, Vatansever A. Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches. Bull. Biotechnol. 2025;6:33–45.
MLA Çavaş, Levent and Atakan Vatansever. “Multi Epitope Based Vaccine Design Against Capnocytophaga Canimorsus through Immunoinformatics Approaches”. Bulletin of Biotechnology, vol. 6, no. 1, 2025, pp. 33-45, doi:10.51539/biotech.1702926.
Vancouver Çavaş L, Vatansever A. Multi Epitope Based Vaccine Design against Capnocytophaga canimorsus through Immunoinformatics Approaches. Bull. Biotechnol. 2025;6(1):33-45.