Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 1, 36 - 41, 26.06.2023
https://doi.org/10.51539/biotech.1239945

Abstract

References

  • Ameres SL, Zamore PD (2013). Diversifying microRNA sequence and function. Nat Rev Mol Cell Bio 14:475-488
  • Bartel DP (2007). MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004). Cell 131:11-29
  • Cai L, Chen Q, Fang S, Lian M, Cai M (2017). MicroRNA‐329 inhibits cell proliferation and tumor growth while facilitates apoptosis via negative regulation of KDM1A in gastric cancer. Journal of Cellular Biochemistry
  • Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nature reviews cancer 6:857-866
  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. P Natl Acad Sci USA 99:15524-15529
  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England journal of medicine 353:1793-1801
  • Cao B, Wang K, Liao J-M, Zhou X, Liao P, Zeng SX, He M, Chen L, He Y, Li W (2016). Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. Elife 5:e15978
  • Chan JA, Krichevsky AM, Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029-6033
  • Chen G, Huang P, Xie J, Li R (2017). microRNA‑211 suppresses the growth and metastasis of cervical cancer by directly targeting ZEB1. Molecular medicine reports
  • Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF (2017). MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1. BMC Cancer 17:750
  • Dalmay T, Edwards DR (2006). MicroRNAs and the hallmarks of cancer. Oncogene 25:6170-6175
  • Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, Steenbergen C (2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596-1603
  • Dozmorov MG, Giles CB, Koelsch KA, Wren JD (2013) Systematic classification of non-coding RNAs by epigenomic similarity. In: BMC bioinformatics. BioMed Central, p S2
  • Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652-665
  • Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer 6:259-269
  • Esteller M (2011). Non-coding RNAs in human disease. Nature reviews genetics 12:861-874
  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences 104:15805-15810
  • Fabian MR, Sonenberg N (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586-593
  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026-1033
  • Frixa T, Donzelli S, Blandino G (2015). Oncogenic MicroRNAs: Key Players in Malignant Transformation. Cancers 7:2466-2485
  • Garzon R, Calin GA, Croce CM (2009). MicroRNAs in cancer. Annual review of medicine 60:167-179
  • Garzon R, Volinia S, Liu C-G, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T (2008). MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183-3189
  • He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews genetics 5:522-531
  • Hemmatzadeh M, Mohammadi H, Jadidi-Niaragh F, Asghari F, Yousefi M (2016). The role of oncomirs in the pathogenesis and treatment of breast cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 78:129-139
  • Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics 12:99-110
  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065-7070
  • Ipsaro JJ, Joshua-Tor L (2015). From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20-28
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005). RAS is regulated by the let-7 microRNA family. Cell 120:635-647
  • Jonas S, Izaurralde E (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature reviews Genetics 16:421-433
  • Lauressergues D, Couzigou J-M, San Clemente H, Martinez Y, Dunand C, Bécard G, Combier J-P (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90-93
  • Lee R, Feinbaum R, Ambros V (2004). A short history of a short RNA. Cell 116:S89-S92
  • Lee RC, Feinbaum RL, Ambros V (1993). The C-Elegans Heterochronic Gene Lin-4 Encodes Small Rnas with Antisense Complementarity to Lin-14. Cell 75:843-854
  • Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience 15:827-835
  • Li Z, Rana TM (2014). Therapeutic targeting of microRNAs: current status and future challenges. Nature reviews Drug discovery 13:622-638
  • Ma F, Zhang L, Ma L, Zhang Y, Zhang J, Guo B (2017). MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1. Journal of experimental & clinical cancer research : CR 36:158
  • Mattick JS (2003). Challenging the dogma: the hidden layer of non‐protein‐coding RNAs in complex organisms. Bioessays 25:930-939
  • Melo SA, Esteller M (2011). Dysregulation of microRNAs in cancer: Playing with fire. Febs Letters 585:2087-2099 Mendell JT (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell cycle 4:1179-1184
  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647-658
  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133-6140
  • Nagano T, Fraser P (2011). No-nonsense functions for long noncoding RNAs. Cell 145:178-181
  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C-G, Rassenti L (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590-11593
  • Petrocca F, Lieberman J (2009). Micromanipulating cancer microRNA-based therapeutics? Rna Biology 6:335-340
  • Ponting CP, Oliver PL, Reik W (2009). Evolution and functions of long noncoding RNAs. Cell 136:629-641 Rajasegaran Y, Azlan A, Rosli AA, Yik MY, Kang Zi K, Yusoff NM, Moses EJ (2021). Footprints of microRNAs in Cancer Biology. Biomedicines 9:1494
  • Reddy KB (2015). MicroRNA (miRNA) in cancer. Cancer cell international 15:1-6
  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome research 14:1902-1910
  • Ruan K, Fang XG, Ouyang GL (2009). MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Letters 285:116-126
  • Saito Y, Nakaoka T, Saito H (2015). microRNA-34a as a Therapeutic Agent against Human Cancer. J Clin Med 4:1951-1959
  • Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA (2016). microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34-42
  • Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D, Le V, Yin P, Ni L, Liu J (2014). Post‐transcriptional regulation of the tumor suppressor miR‐139‐5p and a network of miR‐139‐5p‐mediated m RNA interactions in colorectal cancer. The FEBS journal 281:3609-3624
  • Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van Ijcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ (2022). The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 36:687-700
  • Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y, Shimodaira H, Ishioka C (2017). microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC cancer 17:723
  • van Rooij E, Kauppinen S (2014). Development of microRNA therapeutics is coming of age. Embo Molecular Medicine 6:851-864
  • Vasudevan S, Tong Y, Steitz JA (2007). Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 318:1931-1934
  • Visone R, Croce CM (2009). MiRNAs and cancer. The American journal of pathology 174:1131-1138
  • Wahle E, Winkler GS (2013). RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochimica et biophysica acta 1829:561-570
  • Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends in cell biology 21:354-361 Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 9:189-198
  • Zaratiegui M, Irvine DV, Martienssen RA (2007). Noncoding RNAs and gene silencing. Cell 128:763-776

miRNAs, cancer, and unconventional miRNA functions

Year 2023, Volume: 4 Issue: 1, 36 - 41, 26.06.2023
https://doi.org/10.51539/biotech.1239945

Abstract

MicroRNAs are non-protein-coding RNA molecules that control and fine-tune gene expression at the post-transcriptional level by negatively regulating their target genes. MicroRNAs mature into 22-nucleotide-long RNA transcripts that negatively regulate gene expression by inducing either inhibition of translation or degradation of mRNAs. Increasing evidence suggests that distinct signatures of microRNAs are a feature of human cancers. MicroRNA expression patterns have been linked to tumor development, progression, and response to therapies, implying that they could be used as prognostic and diagnostic biomarkers. Moreover, based on a growing body of research indicating that microRNAs may serve as tumor suppressive or tumor promoter functions, miRNA-based therapy against cancer has lately been utilized, either alone or in conjunction with current targeted strategies. One of the advantages of microRNA-based therapeutics is that they can target numerous components of signaling circuits involved in cell differentiation, proliferation, and survival. In this review, the current available evidence about miRNAs and their diagnostic, prognostic, and therapeutic potential will be discussed. miRNAs may play chief roles in the development and progression of human cancers, offer great advantages in differential diagnosis, and can be therapeutically targeted.

References

  • Ameres SL, Zamore PD (2013). Diversifying microRNA sequence and function. Nat Rev Mol Cell Bio 14:475-488
  • Bartel DP (2007). MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004). Cell 131:11-29
  • Cai L, Chen Q, Fang S, Lian M, Cai M (2017). MicroRNA‐329 inhibits cell proliferation and tumor growth while facilitates apoptosis via negative regulation of KDM1A in gastric cancer. Journal of Cellular Biochemistry
  • Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nature reviews cancer 6:857-866
  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. P Natl Acad Sci USA 99:15524-15529
  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. The New England journal of medicine 353:1793-1801
  • Cao B, Wang K, Liao J-M, Zhou X, Liao P, Zeng SX, He M, Chen L, He Y, Li W (2016). Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. Elife 5:e15978
  • Chan JA, Krichevsky AM, Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029-6033
  • Chen G, Huang P, Xie J, Li R (2017). microRNA‑211 suppresses the growth and metastasis of cervical cancer by directly targeting ZEB1. Molecular medicine reports
  • Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF (2017). MicroRNA-195 acts as an anti-proliferative miRNA in human melanoma cells by targeting Prohibitin 1. BMC Cancer 17:750
  • Dalmay T, Edwards DR (2006). MicroRNAs and the hallmarks of cancer. Oncogene 25:6170-6175
  • Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, Steenbergen C (2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110:1596-1603
  • Dozmorov MG, Giles CB, Koelsch KA, Wren JD (2013) Systematic classification of non-coding RNAs by epigenomic similarity. In: BMC bioinformatics. BioMed Central, p S2
  • Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652-665
  • Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer 6:259-269
  • Esteller M (2011). Non-coding RNAs in human disease. Nature reviews genetics 12:861-874
  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences 104:15805-15810
  • Fabian MR, Sonenberg N (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586-593
  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026-1033
  • Frixa T, Donzelli S, Blandino G (2015). Oncogenic MicroRNAs: Key Players in Malignant Transformation. Cancers 7:2466-2485
  • Garzon R, Calin GA, Croce CM (2009). MicroRNAs in cancer. Annual review of medicine 60:167-179
  • Garzon R, Volinia S, Liu C-G, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T (2008). MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183-3189
  • He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews genetics 5:522-531
  • Hemmatzadeh M, Mohammadi H, Jadidi-Niaragh F, Asghari F, Yousefi M (2016). The role of oncomirs in the pathogenesis and treatment of breast cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 78:129-139
  • Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics 12:99-110
  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065-7070
  • Ipsaro JJ, Joshua-Tor L (2015). From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20-28
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005). RAS is regulated by the let-7 microRNA family. Cell 120:635-647
  • Jonas S, Izaurralde E (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature reviews Genetics 16:421-433
  • Lauressergues D, Couzigou J-M, San Clemente H, Martinez Y, Dunand C, Bécard G, Combier J-P (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature 520:90-93
  • Lee R, Feinbaum R, Ambros V (2004). A short history of a short RNA. Cell 116:S89-S92
  • Lee RC, Feinbaum RL, Ambros V (1993). The C-Elegans Heterochronic Gene Lin-4 Encodes Small Rnas with Antisense Complementarity to Lin-14. Cell 75:843-854
  • Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience 15:827-835
  • Li Z, Rana TM (2014). Therapeutic targeting of microRNAs: current status and future challenges. Nature reviews Drug discovery 13:622-638
  • Ma F, Zhang L, Ma L, Zhang Y, Zhang J, Guo B (2017). MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1. Journal of experimental & clinical cancer research : CR 36:158
  • Mattick JS (2003). Challenging the dogma: the hidden layer of non‐protein‐coding RNAs in complex organisms. Bioessays 25:930-939
  • Melo SA, Esteller M (2011). Dysregulation of microRNAs in cancer: Playing with fire. Febs Letters 585:2087-2099 Mendell JT (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell cycle 4:1179-1184
  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647-658
  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133-6140
  • Nagano T, Fraser P (2011). No-nonsense functions for long noncoding RNAs. Cell 145:178-181
  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu C-G, Rassenti L (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590-11593
  • Petrocca F, Lieberman J (2009). Micromanipulating cancer microRNA-based therapeutics? Rna Biology 6:335-340
  • Ponting CP, Oliver PL, Reik W (2009). Evolution and functions of long noncoding RNAs. Cell 136:629-641 Rajasegaran Y, Azlan A, Rosli AA, Yik MY, Kang Zi K, Yusoff NM, Moses EJ (2021). Footprints of microRNAs in Cancer Biology. Biomedicines 9:1494
  • Reddy KB (2015). MicroRNA (miRNA) in cancer. Cancer cell international 15:1-6
  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome research 14:1902-1910
  • Ruan K, Fang XG, Ouyang GL (2009). MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Letters 285:116-126
  • Saito Y, Nakaoka T, Saito H (2015). microRNA-34a as a Therapeutic Agent against Human Cancer. J Clin Med 4:1951-1959
  • Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA (2016). microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34-42
  • Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D, Le V, Yin P, Ni L, Liu J (2014). Post‐transcriptional regulation of the tumor suppressor miR‐139‐5p and a network of miR‐139‐5p‐mediated m RNA interactions in colorectal cancer. The FEBS journal 281:3609-3624
  • Stavast CJ, van Zuijen I, Karkoulia E, Özçelik A, van Hoven-Beijen A, Leon LG, Voerman JSA, Janssen GMC, van Veelen PA, Burocziova M, Brouwer RWW, van Ijcken WFJ, Maas A, Bindels EM, van der Velden VHJ, Schliehe C, Katsikis PD, Alberich-Jorda M, Erkeland SJ (2022). The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis. Leukemia 36:687-700
  • Takahashi H, Takahashi M, Ohnuma S, Unno M, Yoshino Y, Ouchi K, Takahashi S, Yamada Y, Shimodaira H, Ishioka C (2017). microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC cancer 17:723
  • van Rooij E, Kauppinen S (2014). Development of microRNA therapeutics is coming of age. Embo Molecular Medicine 6:851-864
  • Vasudevan S, Tong Y, Steitz JA (2007). Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 318:1931-1934
  • Visone R, Croce CM (2009). MiRNAs and cancer. The American journal of pathology 174:1131-1138
  • Wahle E, Winkler GS (2013). RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochimica et biophysica acta 1829:561-570
  • Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends in cell biology 21:354-361 Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 9:189-198
  • Zaratiegui M, Irvine DV, Martienssen RA (2007). Noncoding RNAs and gene silencing. Cell 128:763-776
There are 57 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Review Articles
Authors

İbrahim Bozgeyik

Publication Date June 26, 2023
Acceptance Date March 14, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Bozgeyik, İ. (2023). miRNAs, cancer, and unconventional miRNA functions. Bulletin of Biotechnology, 4(1), 36-41. https://doi.org/10.51539/biotech.1239945
AMA Bozgeyik İ. miRNAs, cancer, and unconventional miRNA functions. Bull. Biotechnol. June 2023;4(1):36-41. doi:10.51539/biotech.1239945
Chicago Bozgeyik, İbrahim. “MiRNAs, Cancer, and Unconventional MiRNA Functions”. Bulletin of Biotechnology 4, no. 1 (June 2023): 36-41. https://doi.org/10.51539/biotech.1239945.
EndNote Bozgeyik İ (June 1, 2023) miRNAs, cancer, and unconventional miRNA functions. Bulletin of Biotechnology 4 1 36–41.
IEEE İ. Bozgeyik, “miRNAs, cancer, and unconventional miRNA functions”, Bull. Biotechnol., vol. 4, no. 1, pp. 36–41, 2023, doi: 10.51539/biotech.1239945.
ISNAD Bozgeyik, İbrahim. “MiRNAs, Cancer, and Unconventional MiRNA Functions”. Bulletin of Biotechnology 4/1 (June 2023), 36-41. https://doi.org/10.51539/biotech.1239945.
JAMA Bozgeyik İ. miRNAs, cancer, and unconventional miRNA functions. Bull. Biotechnol. 2023;4:36–41.
MLA Bozgeyik, İbrahim. “MiRNAs, Cancer, and Unconventional MiRNA Functions”. Bulletin of Biotechnology, vol. 4, no. 1, 2023, pp. 36-41, doi:10.51539/biotech.1239945.
Vancouver Bozgeyik İ. miRNAs, cancer, and unconventional miRNA functions. Bull. Biotechnol. 2023;4(1):36-41.