Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of different concentration of exogenous proline applications on cadmium accumulation and mineral nutrition (K, Mg, Na and Ca) of common wheat (Triticum aestivum)

Yıl 2021, Cilt: 30 Sayı: 2, 86 - 91, 15.12.2021
https://doi.org/10.38042/biotechstudies.982144

Öz

The present study investigates the role of exogenously applied proline on cadmium (Cd) accumulation in common wheat (Triticum aestivum L.) tissues. Seedlings were subjected for 4 days to different exogenous proline levels (0, 1, 10, and 20 mM) under Cd stress (1000 μM of Cd(NO3)2·4H2O). The concentration of Cd, Ca, Mg, and K was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Exogenous proline caused significant changes in the growth of wheat cultivar under Cd stress. In addition, the growth of wheat under Cd stress increased by the addition of 1 mM proline. According to the analysis results, Cd accumulation in wheat seedlings showed that the increment of exogenous proline treatments (except Cd+Pr1) in the water resulted in a decrease of Cd content in roots and shoots. Under Cd treatment (not applied proline), the contents of Ca, K, Mg, and Na decreased in roots by 22.1, 70, 17.7, and 10.1% and in shoots by 29.6, 32.2, 19.1, and 5.3%, respectively. Nevertheless, K content decreased in roots and shoots under all Cd and exogenous proline treatments.

Kaynakça

  • Ali, B., Gill, R. A., Yang, S., Gill, M. B., Ali, S. T. M. R., & Zhou, W. (2014). Hydrogen sulphide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology Environmental Safety, 110, 197-207. https://doi.org/10.1016/j.ecoenv.2014.08.027
  • Ali, Q., Ashraf, M., Shahbaz, M., & Humera, H. (2008). Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pakistan Journal of Botany, 40, 211-219.
  • Ashraf, M., & Foolad, M. R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Bashir, A., Rizwan, M., Ali, S., Rehman, M. Z., Ishaque W., Riaz M. A., & Maqbool, A. (2018). Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environmental Science Pollution Resarch, 25, 20691–20699. https://doi.org/10.1007/s11356-018-2042-y
  • Chen, X., Wang, J., Shi, Y., Zhao, M. Q., & Chi, G. Y. (2011). Effects of cadmium on growthand photosynthetic activities in pakchoi and mustard. Botanical Studies, 52, 41–46. https://doi.org/10.1016/j.jplph.2007.01.017
  • Çatav, Ş. S., Genç, T. O., Oktay, M. K., & Küçüyakyüz, K. (2020). Cadmium Toxicity in Wheat: Impacts on Element Contents, Antioxidant Enzyme Activities, Oxidative Stress, and Genotoxicity. Bulletin of Environmental Contamination and Toxicology, 04, 71–77. https://doi.org/10.1007/s00128-019-02745-4
  • Dawood, M. G., Taie, H. A. A., Nassar, R. M. A., Abdelhamid, M. T., & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54–63. https://doi.org/10.1016/j.sajb.2014.03.002
  • Eker, S., Erdem, H., Yazici, M. A., Barut, H., & Heybet, E. H. (2013). Effects of cadmium on growth and nutrient composition of bread and durum wheat genotypes. Fresenius Environmental Bulletin and Advances in Food Sciences. 22, 1779–1786.
  • Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., Rossato, L. V., Bisognin, D. A., Flores, V. L. M., & Nicoloso F. T. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology Biochemistry, 47, 814-821. https://doi.org/10.1016/j.plaphy.2009.04.002
  • Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 72, 323–335. https://doi.org/10.2478/v10184-012-0019-3
  • Hossain M. A., Piyatida, P., Da Silva, A.T., & Fujita M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37 pages. https://doi.org/10.1155/2012/872875
  • Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69–75. https://doi.org/10.1016/j.ecoenv.2013.11.022
  • Iannone, M. F., Groppa, M. D., & Benavides, M. P. (2015). Cadmium induces different bio-chemical responses in wild type and catalase-deficient tobacco plants. Environmental and Experimental Botany, 109, 201–211. https://doi.org/10.1016/j.envexpbot.2014.07.008
  • Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, 1587–1597. https://doi.org/10.1016/j.jplph.2009.04.002
  • Jarup, L., Berglund, M., Elinder, C. G., Nordberg, G., & Vahter, M. (1998). Health effects of cadmium exposure a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health, 24, 1-51.
  • Kamran, M., Shahbaz, M., Ashraf, M., & Akram, N. A. (2009). Alleviation of drought- induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre- sowing seed treatment. Pakistan Journal of Botany, 41, 621-632.
  • Nowak, B. H., Dresler, S., & Wójcik, M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172, 10–18. https://doi.org/10.1016/j.scienta.2014.03.040
  • Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M., & Murata, Y. (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Journal of Soil Science and Plant Nutrition, 50, 301–305. https://doi.org/10.1080/00380768.2004.10408608
  • Pietrini, F., Iannelli, M. A., Montanari, R., Bianconi, D., & Massacci, A. (2005). Cadmium interaction with thiols and photosynthesis in higher plants A. Hemantaranjan (Ed.), Advances in Plant Physiology, Scientific Publishers, Jodhpur, India, pp. 313-326
  • Rasheed, R., Ashraf, M. A., Hussain, I., Haider, M. Z., Kanwal, U., & Iqbal, M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 4, 399–406.
  • Sharma, S. S., Schat, H., & Vooijs, R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49, 1531-1535 http://dx.doi.org/10.1016/S0031-9422(98)00282-9
  • Sharmila, P., & PardhaSaradhi, P. (2002). Proline accumulation in heavy metal stressed plants: an adaptive strategy. In: Prasad MNV, Strazlka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 179–199. https://doi.org/10.13140/2.1.2821.1526
  • Tamas, L., Dudikova, J., Durcekova, K., Haluskova, L., Huttova, J., Mistrik, I., & Olle, M. (2008). Alteration of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 165, 1193–1203. https://doi.org/10.1016/j.jplph.2007.08.013
  • Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131, 454–462. https://doi.org/10.1104/pp.102.011007
  • Vitale, J., Adam, B., & Vitale, P. (2020). Economics of wheat breeding strategies: focusing on Oklahoma hard red winter wheat. Agronomy, 10, 238. https://doi.org/10.3390/agronomy10020238
  • Xu, J., Yin, H., & Li, X. (2009). Protective effects of proline against cadmium toxicity in micro propagated hyper accumulator, Solanum nigrum L. Plant Cell Reports, 28, 325-333. http://dx.doi.org/10.1007/s00299-008-0643-5
Yıl 2021, Cilt: 30 Sayı: 2, 86 - 91, 15.12.2021
https://doi.org/10.38042/biotechstudies.982144

Öz

Kaynakça

  • Ali, B., Gill, R. A., Yang, S., Gill, M. B., Ali, S. T. M. R., & Zhou, W. (2014). Hydrogen sulphide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology Environmental Safety, 110, 197-207. https://doi.org/10.1016/j.ecoenv.2014.08.027
  • Ali, Q., Ashraf, M., Shahbaz, M., & Humera, H. (2008). Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pakistan Journal of Botany, 40, 211-219.
  • Ashraf, M., & Foolad, M. R. (2007). Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Bashir, A., Rizwan, M., Ali, S., Rehman, M. Z., Ishaque W., Riaz M. A., & Maqbool, A. (2018). Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environmental Science Pollution Resarch, 25, 20691–20699. https://doi.org/10.1007/s11356-018-2042-y
  • Chen, X., Wang, J., Shi, Y., Zhao, M. Q., & Chi, G. Y. (2011). Effects of cadmium on growthand photosynthetic activities in pakchoi and mustard. Botanical Studies, 52, 41–46. https://doi.org/10.1016/j.jplph.2007.01.017
  • Çatav, Ş. S., Genç, T. O., Oktay, M. K., & Küçüyakyüz, K. (2020). Cadmium Toxicity in Wheat: Impacts on Element Contents, Antioxidant Enzyme Activities, Oxidative Stress, and Genotoxicity. Bulletin of Environmental Contamination and Toxicology, 04, 71–77. https://doi.org/10.1007/s00128-019-02745-4
  • Dawood, M. G., Taie, H. A. A., Nassar, R. M. A., Abdelhamid, M. T., & Schmidhalter, U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South African Journal of Botany, 93, 54–63. https://doi.org/10.1016/j.sajb.2014.03.002
  • Eker, S., Erdem, H., Yazici, M. A., Barut, H., & Heybet, E. H. (2013). Effects of cadmium on growth and nutrient composition of bread and durum wheat genotypes. Fresenius Environmental Bulletin and Advances in Food Sciences. 22, 1779–1786.
  • Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., Rossato, L. V., Bisognin, D. A., Flores, V. L. M., & Nicoloso F. T. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology Biochemistry, 47, 814-821. https://doi.org/10.1016/j.plaphy.2009.04.002
  • Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013). Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 72, 323–335. https://doi.org/10.2478/v10184-012-0019-3
  • Hossain M. A., Piyatida, P., Da Silva, A.T., & Fujita M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 37 pages. https://doi.org/10.1155/2012/872875
  • Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69–75. https://doi.org/10.1016/j.ecoenv.2013.11.022
  • Iannone, M. F., Groppa, M. D., & Benavides, M. P. (2015). Cadmium induces different bio-chemical responses in wild type and catalase-deficient tobacco plants. Environmental and Experimental Botany, 109, 201–211. https://doi.org/10.1016/j.envexpbot.2014.07.008
  • Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, 1587–1597. https://doi.org/10.1016/j.jplph.2009.04.002
  • Jarup, L., Berglund, M., Elinder, C. G., Nordberg, G., & Vahter, M. (1998). Health effects of cadmium exposure a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health, 24, 1-51.
  • Kamran, M., Shahbaz, M., Ashraf, M., & Akram, N. A. (2009). Alleviation of drought- induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre- sowing seed treatment. Pakistan Journal of Botany, 41, 621-632.
  • Nowak, B. H., Dresler, S., & Wójcik, M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172, 10–18. https://doi.org/10.1016/j.scienta.2014.03.040
  • Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M., & Murata, Y. (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Journal of Soil Science and Plant Nutrition, 50, 301–305. https://doi.org/10.1080/00380768.2004.10408608
  • Pietrini, F., Iannelli, M. A., Montanari, R., Bianconi, D., & Massacci, A. (2005). Cadmium interaction with thiols and photosynthesis in higher plants A. Hemantaranjan (Ed.), Advances in Plant Physiology, Scientific Publishers, Jodhpur, India, pp. 313-326
  • Rasheed, R., Ashraf, M. A., Hussain, I., Haider, M. Z., Kanwal, U., & Iqbal, M. (2014). Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 4, 399–406.
  • Sharma, S. S., Schat, H., & Vooijs, R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry, 49, 1531-1535 http://dx.doi.org/10.1016/S0031-9422(98)00282-9
  • Sharmila, P., & PardhaSaradhi, P. (2002). Proline accumulation in heavy metal stressed plants: an adaptive strategy. In: Prasad MNV, Strazlka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 179–199. https://doi.org/10.13140/2.1.2821.1526
  • Tamas, L., Dudikova, J., Durcekova, K., Haluskova, L., Huttova, J., Mistrik, I., & Olle, M. (2008). Alteration of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 165, 1193–1203. https://doi.org/10.1016/j.jplph.2007.08.013
  • Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131, 454–462. https://doi.org/10.1104/pp.102.011007
  • Vitale, J., Adam, B., & Vitale, P. (2020). Economics of wheat breeding strategies: focusing on Oklahoma hard red winter wheat. Agronomy, 10, 238. https://doi.org/10.3390/agronomy10020238
  • Xu, J., Yin, H., & Li, X. (2009). Protective effects of proline against cadmium toxicity in micro propagated hyper accumulator, Solanum nigrum L. Plant Cell Reports, 28, 325-333. http://dx.doi.org/10.1007/s00299-008-0643-5
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi
Bölüm Research Articles
Yazarlar

Tuncer Okan Genç Bu kişi benim 0000-0002-2139-7655

Yayımlanma Tarihi 15 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 30 Sayı: 2

Kaynak Göster

APA Genç, T. O. (2021). Effect of different concentration of exogenous proline applications on cadmium accumulation and mineral nutrition (K, Mg, Na and Ca) of common wheat (Triticum aestivum). Biotech Studies, 30(2), 86-91. https://doi.org/10.38042/biotechstudies.982144


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services