Araştırma Makalesi
BibTex RIS Kaynak Göster

The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey

Yıl 2022, Cilt: 62 Sayı: 1, 24 - 33, 31.03.2022
https://doi.org/10.16955/bitkorb.1014427

Öz

The inoculum sources of phytoplasmas associated with carrot severe yellowing and reddening symptoms were investigated in Ankara and Konya provinces, Turkey. The presence of 16SrVI and 16SrI-related phytoplasmas in the seeds of seven carrot cultivars that are widely cultivated in the regions, as well as in weeds in the fields, was determined in this study. Sequence analysis was confirmed existing phytoplasma groups in samples were determined by using conventional molecular methods (nested-PCR) and the obtained results were supported by phylogenetic studies. In addition, the obtained nucleotide sequences were compared with the reference phytoplasma sequences by in silico PCR-RFLP analysis. Daucus carota wild, Medicago sativa, Conium maculatum, and Sinapis arvensis weeds were infected with the 16SrVI (Clover proliferation) phytoplasma group. In addition, 16SrVI and 16SrI (Aster yellows) phytoplasma groups were identified in seedlings germinated from seeds of seven carrot cultivars: one was a local red carrot cultivar and six were commercially produced cultivars. To our knowledge, this was the first report of carrot seeds infected with the 16SrVI group and the presence of the 16SrVI group in S. arvensis, C. maculatum, and D. carota wild.

Destekleyen Kurum

Bilecik Şeyh Edebali Üniversitesi

Proje Numarası

[code: 2017-02.BŞEÜ.06-01]

Teşekkür

This manuscript is a part of the PhD thesis of the first/corresponding author. The authors are grateful to Bilecik Şeyh Edebali University Scientific Research Projects for supporting this project [code: 2017-02.BŞEÜ.06-01]. Also, the authors are grateful to Ankara and Konya farmers for providing the carrot seeds. We would also like to thank Dr. Ahmet Tansel SERİM for morphological diagnosis of weeds.

Kaynakça

  • Alfaro-Fernandez A., Siverio F., Cebrian M.C., Villaescusa F.J., Font M.I. (2012). ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Disease, 96: 581.
  • Al-Sadi A.M., Al-Moqbali H.S., Al-Yahyai R.A., Al-Said F.A. (2012). AFLP data suggest a potential role for the low genetic diversity of acid lime (Citrus aurantifolia Swingle) in Oman in the outbreak of witches’ broom disease of lime. Euphytica, 188, 285–297.
  • Banzato T.C., Ferreira J., Bedendo I.P. (2021). Field mustard (Brassica rapa) an invasive weed species in cauliflower fields is a host of multiple phytoplasmas. Australasian Plant Pathology, 50:403–405.
  • Calari A., Paltrinieri S., Contaldo N., Sakalieva D., Mori N., Duduk B., Bertaccini A. (2011). Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bulletin of Insectology, 64(S):S157–S158.
  • Casati P., Quaglino F., Abou-Jawdah Y., Picciau L., Cominetti A., Tedeschi R., Jawhari M., Choueir E., Sobh H., Lova M.M., Beyrouthy M., Alma A., Bianco P.A. (2016). Wild plants could play a role in the spread of diseases associated with phytoplasmas of pigeon pea witches'-broom group (16SrIX). Journal of Plant Pathology, 98:1- 71-81.
  • Carminati G., Satta E, Paltrinieri S, Bertaccini A (2019). Simultaneous evaluation of ‘Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathogenic Mollicutes, 9(1):141–142.
  • Cebrian M.C., Villaescusa F.J., Alfaro-Fernandez A., Hermoso de Mendoza A., Cardoba-Sellees M.C., Jorda C., Ferrandiz J.C., Sanjuan S., Font M.I. (2010). First report of Spiroplasma citri in carrot in Europe. Plant Disease, 94: 1264.
  • Credi R., Terlizzi F., Milanesi L., Bondavalli R., Cavallini G., Montermini A., Dradi D. (2006). Wild host plants of “stolbur” phytoplasma and its vector, Hyalesthes obsoletus, at sites of grapevine “bois noir” occurrence in Emilia-Romagna, Italy. 15th Meeting ICVG, Stellenbosch, South Africa, 182–183.
  • Duduk B., Stepanović J., Yadav A., Rao G.P. (2018). Phytoplasmas in Weeds and Wild Plants. Phytoplasmas: Plant Pathogenic Bacteria - I. Springer, Springer, Singapore, pp 313-345.
  • Duduk B., Perić P., Marčić D., Drobnjaković T., Picciau L., Alma A., Bertaccini A. (2008). Phytoplasmas in carrots: disease and potential vectors in Serbia. Bulletin of Insectology, 61:327–331.
  • Ember I., Acs Z., Munyaneza J.E., Crosslin J.M., Kolber M. (2011). Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. European Journal of Plant Pathology, 130, 367–377.
  • Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. (2016a). First report of 16SrVI-A and 16SrXII-A phytoplasmas associated with alfalfa witches’ broom disease in Iran. Journal of Plant Pathology, 98, 369–377.
  • Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. (2016b). Characterization of 16SrII group phytoplasmas associated with alfalfa (Medicago sativa) witches’ broom disease in diverse areas of Iran. Journal of Crop Protection, 5: 581–590.
  • Felsenstein J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368 – 376.
  • Fernández F.D., Galdeano E., Conci L.R. (2020). Phytoplasmas diversity and identification of new aster yellows subgroup (16SrI) associated with weed species in Argentina. International Journal of Systematic and Evolutionary Microbiology, 70(1):35-43.
  • Gamarra D., Cuellar W., Mayta E., Olortegui O., Lozada P., Ramírez R., Chuquillanqui C., Bartolini I., Torres G., Durigon E. (2011). Molecular identification of viruses co-infecting with phytoplasma in carrot crops in Peru. XXII National Meeting of Virology & VI Mercosur Meeting of Virology, At: Atibaia, São Paulo, Brazil.
  • Gundersen D.E., Lee I-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35:114–151.
  • Himeno M., Neriya Y., Minato N., Miura C., Sugawara K., Ishii Y., Yamaji Y., Kakizawa S., Oshima K., Namba S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. The Plant Journal, 67:971-979. Hogenhout S.A., Oshima K., Ammar E.D., Kakizawa S., Kingdom H.N., Namba S. (2008). Phytoplasmas: Bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.
  • IRPCM (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54:(4)-1243-1255.
  • Khan A.J., Botti S., Paltrinieri S., Al-Subhi A.M., Bertaccini A. (2002). Phytoplasmas in alfalfa seedlings: infected or contaminated seeds? Abstracts 14th IOM. Vienna, July 07-12:6.
  • Kitamura Y., Hosokawa M., Uemachi T., Yazawa S. (2009). Selection of ABC genes for candidate genes of morphological changes in hydrangeafloral organs induced by phytoplasma infection. Scientia Horticulturae, 122, 603–609.
  • Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35:1547-1549.
  • Kumari S., Nagendran K., Rai A.B., Singh B., Rao G.P., Bertaccini A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers Microbiology, 10:1349.
  • Latham L.J., Traicevski V., Persley D. M., Wilson C.R., Tesoriero L., Coles R., Jones R. A. C. (2004). Distribution and incidence of Carrot virus Y in Australia. Australasian Plant Pathology, 33:83–86.
  • Lee I-M, Bottner K.D., Munyaneza J.E., Davis R.E., Crosslin J.M., du Toit L.J., Crosby T. (2006). Carrot purple leaf: A new spiroplasmal disease associated with carrots in Washington State. Plant Disease, 90:989-993.
  • Lee I-M., Bertaccini A., Vibio M., Gundersen D.E. (1995). Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 85: 728-735.
  • Li R., Mock R., Huang Q., Abad J., Hartung J., Kinard G. (2008). A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2):48-55.
  • Liu J., Gopurenko D., Fletcher M.J., Johnson A.C., Gurr G.M. (2017). Phytoplasmas–the “crouching tiger” threat of Australian plant pathology. Frontiers Plant Science, 26:599.
  • Lorenz K., Schneider B., Ahrens U., Seemüller E. (1995). Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology, 85: 771-776.
  • Mall S., Rao G.P., Marcone C. (2010). Phytoplasma diseases of weeds: Detection, taxonomy and diversity. Recent trends in Biotechnology and Microbiology, Noca Sci Pub, NY, USA, pp87-108.
  • Mazraie M.A., Izadpanah K., Hamzehzarghani H., Salehi M., Faghihi M.M. (2019). Spread and colonization pattern of ‘Candidatus Phytoplasma aurantifolia’ in lime plants [Citrus aurantifolia (Christm.) Swingle] as revealed by real-time PCR assay. Jornal of Plant Pathology, 101, 629–637.
  • McCoy R.E., Caudwell A., Chang C.J., Chen T.A., Chiykowskyi L.N., Cousin M.T., Dale de Leeuw G.T.N., Golino D.A., Hackett K.J., Kirkptrick B.C., Marwitz R., Petzold H., Shina R.H., Sugiura M., Whitcomb R.F., Yang I.L., Zhu B.M., Seemüller E. (1989). Plant diseases associated with mycoplasma-like organisms. The mycoplasmas, vol 5. Academic, New York, pp 545–640.
  • Menon K.P.V, Pandalai K.M. (1960). The coconut palm, a monograph. Indian Central Coconut Committee, Ernakulam, India.1958 xvi, 384 p.
  • Omar A.F. (2017). Detection and molecular characterization of phytoplasmas associated with vegetable and alfalfa crops in Qassim region. Journal of Plant Interactions, 12:(1), 58–66.
  • Pracros P., Renaudin J., Eveillard S., Mouras A., Hernould M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection areassociated with changes of expression of floral development genes. Molecular Plant Microbe Interaction, 19: 62–68.
  • Satta E., Ramírez A.S., Paltrinieri S., Contaldo N., Benito P., Poveda J.B., Bertaccini A. (2016). Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’ infection in carrot. Phytopathologia Mediterranea, 55(3):401–409.
  • Satta E., Nanni I.M., Contaldo N., Collina M., Poveda J.B., Ramirez A.S., Bertaccini A. (2017). General phytoplasma detection by a q-PCR method using mycoplasma primers. Molecular and Cellular Probes, 35:1–7.
  • Satta E., Paltrinieri S., Bertaccini A. (2019). Phytoplasma transmission by seed in Phytoplasmas: Plant Pathogenic Bacteria-II Transmission and Management of Phytoplasma Associated Diseases, Springer, Singapore pp 131–147.
  • Satta E., Carminati G., Bertaccini A. (2020). Phytoplasma presence in carrot seedlings Australiasian Plant Diseases Notes, 15:11 DOI: 10.1007/s13314-020-0377-y.
  • Sertkaya G. (2014). Hatay ili havuç alanlarında fitoplazmaların araştırılması. Turkey V. Plant Protection Congress, Antalya/Turkey, p 279.
  • Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3):512-26.
  • Trkulja V., Mitrović P., Salapura J.M., Iličić R., Ćurković B., Ivica Đalović I., and Popović T. (2021). First Report of ‘Candidatus Liberibacter solanacearum’ on Carrot in Serbia. Diseases Notes, https://doi.org/10.1094/PDIS-11-20-2384-PDN.
  • TSI (2021). Turkish Statistical Institute, Crop production Statistics. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr.Accessed date: 25 August 2021.
  • Valiunas D., Alminaite A., Staniulis J., Jomantiene R., Davis R.E. (2001). First Report of Aster Yellows-Related Subgroup I-A Phytoplasma Strains in Carrot, Phlox, Sea-Lavender, Aconitum, and Hyacinth in Lithuania. Plant Disease, 85(7):804.
  • Weintraub, P.G. and Orenstein, S. (2004). Potential leafhopper vectors of phytoplasma in carrots. International Journal of Tropical Insect Science, 24: 228–235.
  • Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T.G., Van Etten J., Maniloff J., Woese C.R. (1989). A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology, 171, 6455–6467.
  • Wu Y., Hao, X., Li Z., Gu P., An F., Xiang J., Wang H., Luo Z., Liu J., Xiang Y. (2010). Identification of the phytoplasma associated with wheat blue dwarf disease in China. Plant Disease, 94, 977–985.
  • Yang Y., Zhao W., Li Z., Zhu S. (2011). Molecular Identification of a ‘Candidatus Phytoplasma ziziphi’-related strain infecting amaranth (Amaranthus retroflexus L.) in China. Journal of Phytopathology, 159, 635–637.
  • Wei W., Davis R .E., Lee I-M., Zhao Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855

Türkiye'de Ankara ve Konya illerinde 16SrVI ve 16SrI fitoplazma gruplarının havuç tohumları ve yabancı otlarla ilişkisi

Yıl 2022, Cilt: 62 Sayı: 1, 24 - 33, 31.03.2022
https://doi.org/10.16955/bitkorb.1014427

Öz

Havuçta şiddetli sararma ve kızarıklık belirtileri ile ilişkili fitoplazma inokulum kaynakları Ankara ve Konya illerinde araştırılmıştır. Bu çalışma kapsamında bölgelerde yoğun olarak ekimi yapılan yedi havuç çeşidinin tohumlarında ve tarlalarda yer alan yabancı otlarda 16SrVI ve 16SrI ilişkili fitoplazmaların varlığı tespit edilmiştir. Konvansiyonel moleküler yöntemler (nested-PCR) kullanılarak dizi analizleri ile fitoplazma gruplarının varlığı doğrulanmış ve filogenetik analizler ile desteklenmiştir. Ayrıca elde edilen nükleotid dizileri, in silico PCR-RFLP analizi ile referans fitoplazma dizileri ile karşılaştırılmıştır. Daucus carota wild, Medicago sativa, Conium maculatum ve Sinapis arvensis yabancı otlarında 16SrVI (Clover proliferation) fitoplazma grubu ile enfeksiyon belirlenmiştir. Ayrıca yedi havuç çeşidinin tohumlarından çimlenen fidelerde 16SrVI ve 16SrI (Aster yellows) fitoplazma grupları tespit edilmiştir: Biri yerel kırmızı havuç çeşidi ve altısı ticari olarak üretilmiş çeşitlerdir. Bilgilerimize göre elde edilen bulgular; 16SrVI grubu ile enfekte olmuş havuç tohumlarının ve S. arvensis, C. maculatum ve D. carota wild'da 16SrVI grubunun varlığının ilk raporudur.

Proje Numarası

[code: 2017-02.BŞEÜ.06-01]

Kaynakça

  • Alfaro-Fernandez A., Siverio F., Cebrian M.C., Villaescusa F.J., Font M.I. (2012). ‘Candidatus Liberibacter solanacearum’ associated with Bactericera trigonica-affected carrots in the Canary Islands. Plant Disease, 96: 581.
  • Al-Sadi A.M., Al-Moqbali H.S., Al-Yahyai R.A., Al-Said F.A. (2012). AFLP data suggest a potential role for the low genetic diversity of acid lime (Citrus aurantifolia Swingle) in Oman in the outbreak of witches’ broom disease of lime. Euphytica, 188, 285–297.
  • Banzato T.C., Ferreira J., Bedendo I.P. (2021). Field mustard (Brassica rapa) an invasive weed species in cauliflower fields is a host of multiple phytoplasmas. Australasian Plant Pathology, 50:403–405.
  • Calari A., Paltrinieri S., Contaldo N., Sakalieva D., Mori N., Duduk B., Bertaccini A. (2011). Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bulletin of Insectology, 64(S):S157–S158.
  • Casati P., Quaglino F., Abou-Jawdah Y., Picciau L., Cominetti A., Tedeschi R., Jawhari M., Choueir E., Sobh H., Lova M.M., Beyrouthy M., Alma A., Bianco P.A. (2016). Wild plants could play a role in the spread of diseases associated with phytoplasmas of pigeon pea witches'-broom group (16SrIX). Journal of Plant Pathology, 98:1- 71-81.
  • Carminati G., Satta E, Paltrinieri S, Bertaccini A (2019). Simultaneous evaluation of ‘Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathogenic Mollicutes, 9(1):141–142.
  • Cebrian M.C., Villaescusa F.J., Alfaro-Fernandez A., Hermoso de Mendoza A., Cardoba-Sellees M.C., Jorda C., Ferrandiz J.C., Sanjuan S., Font M.I. (2010). First report of Spiroplasma citri in carrot in Europe. Plant Disease, 94: 1264.
  • Credi R., Terlizzi F., Milanesi L., Bondavalli R., Cavallini G., Montermini A., Dradi D. (2006). Wild host plants of “stolbur” phytoplasma and its vector, Hyalesthes obsoletus, at sites of grapevine “bois noir” occurrence in Emilia-Romagna, Italy. 15th Meeting ICVG, Stellenbosch, South Africa, 182–183.
  • Duduk B., Stepanović J., Yadav A., Rao G.P. (2018). Phytoplasmas in Weeds and Wild Plants. Phytoplasmas: Plant Pathogenic Bacteria - I. Springer, Springer, Singapore, pp 313-345.
  • Duduk B., Perić P., Marčić D., Drobnjaković T., Picciau L., Alma A., Bertaccini A. (2008). Phytoplasmas in carrots: disease and potential vectors in Serbia. Bulletin of Insectology, 61:327–331.
  • Ember I., Acs Z., Munyaneza J.E., Crosslin J.M., Kolber M. (2011). Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. European Journal of Plant Pathology, 130, 367–377.
  • Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. (2016a). First report of 16SrVI-A and 16SrXII-A phytoplasmas associated with alfalfa witches’ broom disease in Iran. Journal of Plant Pathology, 98, 369–377.
  • Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A. (2016b). Characterization of 16SrII group phytoplasmas associated with alfalfa (Medicago sativa) witches’ broom disease in diverse areas of Iran. Journal of Crop Protection, 5: 581–590.
  • Felsenstein J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368 – 376.
  • Fernández F.D., Galdeano E., Conci L.R. (2020). Phytoplasmas diversity and identification of new aster yellows subgroup (16SrI) associated with weed species in Argentina. International Journal of Systematic and Evolutionary Microbiology, 70(1):35-43.
  • Gamarra D., Cuellar W., Mayta E., Olortegui O., Lozada P., Ramírez R., Chuquillanqui C., Bartolini I., Torres G., Durigon E. (2011). Molecular identification of viruses co-infecting with phytoplasma in carrot crops in Peru. XXII National Meeting of Virology & VI Mercosur Meeting of Virology, At: Atibaia, São Paulo, Brazil.
  • Gundersen D.E., Lee I-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35:114–151.
  • Himeno M., Neriya Y., Minato N., Miura C., Sugawara K., Ishii Y., Yamaji Y., Kakizawa S., Oshima K., Namba S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. The Plant Journal, 67:971-979. Hogenhout S.A., Oshima K., Ammar E.D., Kakizawa S., Kingdom H.N., Namba S. (2008). Phytoplasmas: Bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.
  • IRPCM (2004). ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54:(4)-1243-1255.
  • Khan A.J., Botti S., Paltrinieri S., Al-Subhi A.M., Bertaccini A. (2002). Phytoplasmas in alfalfa seedlings: infected or contaminated seeds? Abstracts 14th IOM. Vienna, July 07-12:6.
  • Kitamura Y., Hosokawa M., Uemachi T., Yazawa S. (2009). Selection of ABC genes for candidate genes of morphological changes in hydrangeafloral organs induced by phytoplasma infection. Scientia Horticulturae, 122, 603–609.
  • Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35:1547-1549.
  • Kumari S., Nagendran K., Rai A.B., Singh B., Rao G.P., Bertaccini A. (2019). Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers Microbiology, 10:1349.
  • Latham L.J., Traicevski V., Persley D. M., Wilson C.R., Tesoriero L., Coles R., Jones R. A. C. (2004). Distribution and incidence of Carrot virus Y in Australia. Australasian Plant Pathology, 33:83–86.
  • Lee I-M, Bottner K.D., Munyaneza J.E., Davis R.E., Crosslin J.M., du Toit L.J., Crosby T. (2006). Carrot purple leaf: A new spiroplasmal disease associated with carrots in Washington State. Plant Disease, 90:989-993.
  • Lee I-M., Bertaccini A., Vibio M., Gundersen D.E. (1995). Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 85: 728-735.
  • Li R., Mock R., Huang Q., Abad J., Hartung J., Kinard G. (2008). A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2):48-55.
  • Liu J., Gopurenko D., Fletcher M.J., Johnson A.C., Gurr G.M. (2017). Phytoplasmas–the “crouching tiger” threat of Australian plant pathology. Frontiers Plant Science, 26:599.
  • Lorenz K., Schneider B., Ahrens U., Seemüller E. (1995). Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology, 85: 771-776.
  • Mall S., Rao G.P., Marcone C. (2010). Phytoplasma diseases of weeds: Detection, taxonomy and diversity. Recent trends in Biotechnology and Microbiology, Noca Sci Pub, NY, USA, pp87-108.
  • Mazraie M.A., Izadpanah K., Hamzehzarghani H., Salehi M., Faghihi M.M. (2019). Spread and colonization pattern of ‘Candidatus Phytoplasma aurantifolia’ in lime plants [Citrus aurantifolia (Christm.) Swingle] as revealed by real-time PCR assay. Jornal of Plant Pathology, 101, 629–637.
  • McCoy R.E., Caudwell A., Chang C.J., Chen T.A., Chiykowskyi L.N., Cousin M.T., Dale de Leeuw G.T.N., Golino D.A., Hackett K.J., Kirkptrick B.C., Marwitz R., Petzold H., Shina R.H., Sugiura M., Whitcomb R.F., Yang I.L., Zhu B.M., Seemüller E. (1989). Plant diseases associated with mycoplasma-like organisms. The mycoplasmas, vol 5. Academic, New York, pp 545–640.
  • Menon K.P.V, Pandalai K.M. (1960). The coconut palm, a monograph. Indian Central Coconut Committee, Ernakulam, India.1958 xvi, 384 p.
  • Omar A.F. (2017). Detection and molecular characterization of phytoplasmas associated with vegetable and alfalfa crops in Qassim region. Journal of Plant Interactions, 12:(1), 58–66.
  • Pracros P., Renaudin J., Eveillard S., Mouras A., Hernould M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection areassociated with changes of expression of floral development genes. Molecular Plant Microbe Interaction, 19: 62–68.
  • Satta E., Ramírez A.S., Paltrinieri S., Contaldo N., Benito P., Poveda J.B., Bertaccini A. (2016). Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’ infection in carrot. Phytopathologia Mediterranea, 55(3):401–409.
  • Satta E., Nanni I.M., Contaldo N., Collina M., Poveda J.B., Ramirez A.S., Bertaccini A. (2017). General phytoplasma detection by a q-PCR method using mycoplasma primers. Molecular and Cellular Probes, 35:1–7.
  • Satta E., Paltrinieri S., Bertaccini A. (2019). Phytoplasma transmission by seed in Phytoplasmas: Plant Pathogenic Bacteria-II Transmission and Management of Phytoplasma Associated Diseases, Springer, Singapore pp 131–147.
  • Satta E., Carminati G., Bertaccini A. (2020). Phytoplasma presence in carrot seedlings Australiasian Plant Diseases Notes, 15:11 DOI: 10.1007/s13314-020-0377-y.
  • Sertkaya G. (2014). Hatay ili havuç alanlarında fitoplazmaların araştırılması. Turkey V. Plant Protection Congress, Antalya/Turkey, p 279.
  • Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3):512-26.
  • Trkulja V., Mitrović P., Salapura J.M., Iličić R., Ćurković B., Ivica Đalović I., and Popović T. (2021). First Report of ‘Candidatus Liberibacter solanacearum’ on Carrot in Serbia. Diseases Notes, https://doi.org/10.1094/PDIS-11-20-2384-PDN.
  • TSI (2021). Turkish Statistical Institute, Crop production Statistics. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr.Accessed date: 25 August 2021.
  • Valiunas D., Alminaite A., Staniulis J., Jomantiene R., Davis R.E. (2001). First Report of Aster Yellows-Related Subgroup I-A Phytoplasma Strains in Carrot, Phlox, Sea-Lavender, Aconitum, and Hyacinth in Lithuania. Plant Disease, 85(7):804.
  • Weintraub, P.G. and Orenstein, S. (2004). Potential leafhopper vectors of phytoplasma in carrots. International Journal of Tropical Insect Science, 24: 228–235.
  • Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T.G., Van Etten J., Maniloff J., Woese C.R. (1989). A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology, 171, 6455–6467.
  • Wu Y., Hao, X., Li Z., Gu P., An F., Xiang J., Wang H., Luo Z., Liu J., Xiang Y. (2010). Identification of the phytoplasma associated with wheat blue dwarf disease in China. Plant Disease, 94, 977–985.
  • Yang Y., Zhao W., Li Z., Zhu S. (2011). Molecular Identification of a ‘Candidatus Phytoplasma ziziphi’-related strain infecting amaranth (Amaranthus retroflexus L.) in China. Journal of Phytopathology, 159, 635–637.
  • Wei W., Davis R .E., Lee I-M., Zhao Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Filiz Randa Zelyüt 0000-0002-1366-4389

Filiz Ertunç 0000-0002-0557-6119

Derya Şenal 0000-0003-0897-4486

Proje Numarası [code: 2017-02.BŞEÜ.06-01]
Erken Görünüm Tarihi 30 Mart 2022
Yayımlanma Tarihi 31 Mart 2022
Gönderilme Tarihi 25 Ekim 2021
Kabul Tarihi 3 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 62 Sayı: 1

Kaynak Göster

APA Randa Zelyüt, F., Ertunç, F., & Şenal, D. (2022). The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin, 62(1), 24-33. https://doi.org/10.16955/bitkorb.1014427
AMA Randa Zelyüt F, Ertunç F, Şenal D. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin. Mart 2022;62(1):24-33. doi:10.16955/bitkorb.1014427
Chicago Randa Zelyüt, Filiz, Filiz Ertunç, ve Derya Şenal. “The Association of 16SrVI and 16SrI Phytoplasma Groups With Carrot Seeds and Weeds in Ankara and Konya Provinces in Turkey”. Plant Protection Bulletin 62, sy. 1 (Mart 2022): 24-33. https://doi.org/10.16955/bitkorb.1014427.
EndNote Randa Zelyüt F, Ertunç F, Şenal D (01 Mart 2022) The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin 62 1 24–33.
IEEE F. Randa Zelyüt, F. Ertunç, ve D. Şenal, “The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey”, Plant Protection Bulletin, c. 62, sy. 1, ss. 24–33, 2022, doi: 10.16955/bitkorb.1014427.
ISNAD Randa Zelyüt, Filiz vd. “The Association of 16SrVI and 16SrI Phytoplasma Groups With Carrot Seeds and Weeds in Ankara and Konya Provinces in Turkey”. Plant Protection Bulletin 62/1 (Mart 2022), 24-33. https://doi.org/10.16955/bitkorb.1014427.
JAMA Randa Zelyüt F, Ertunç F, Şenal D. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin. 2022;62:24–33.
MLA Randa Zelyüt, Filiz vd. “The Association of 16SrVI and 16SrI Phytoplasma Groups With Carrot Seeds and Weeds in Ankara and Konya Provinces in Turkey”. Plant Protection Bulletin, c. 62, sy. 1, 2022, ss. 24-33, doi:10.16955/bitkorb.1014427.
Vancouver Randa Zelyüt F, Ertunç F, Şenal D. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin. 2022;62(1):24-33.

134351364813650136491344113445