BibTex RIS Kaynak Göster

Quantum Dynamic Effects at Insertion Minimum Reaction: H+LiF Reaction

Yıl 2016, Cilt: 5 Sayı: 2, 0 - 0, 27.12.2016

Öz

In transition state (TS) region almost all systems (reactions) have weak van der waals complex structures. When these systems include heavy atom transfer, the forming quantum tunneling effects are suppressed. At TS region these reactions, especially including insertion minimum energy wells, demonstrate to rapidly the formation of product molecules at low temperature region. This study has focused on H+LiF system, one of systems that have this feature. In this system, since unstable H--F--Li complex quasibound states have the barriers in the TS, it is important to investigate and understand to depending on specific quantum states of the initial and the product molecule for this reaction. The results in collision energy range of 0-0.8 eV were obtained and corrected by using Reel Wave Packet (RWP) methods. Integral reaction cross sections as a function of collision energy were calculated via simple J-shifting (SJS) and reaction rate constants were examined in temperature range of 100-1000 0K.

Kaynakça

  • Paniagua, M, Aguado, A, Lara, M, Roncero, O. 1999. Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, and Photochemistry-Transition state spectroscopy via infrared excitation of Li... HF and Li... DF van der Waals. Journal of Chemical Physics, 111: 6712.
  • Burel, R., Piecuch, P., Spirko, V., Bludsky, O. 2002. Bound and Quasi-bound States of the Li—FH van der Walls Molecule: The Effect of the Potential Energy Surface and of the Basis Set Superposition Error. Journal of Molecular Structure, 591: 151-174.
  • Jaffe, R. L., Pattengill, M. D., Mascarello, F. G., Zare, R. N. 1987. Ca+HF: The anatomy of a chemical insertion reaction. Journal of Chemical Physics, 86: 6150.
  • Sanz, V., Aguado, A., Paniagua, M. 1998. Second-order density functional calculations of the MgFH potential energy surface. Journal of Molecular Structure: THEOCHEM, 426: 165.
  • Cai, M.-Q., Zhang, L.,Tang, B.-Y., Chen, M.-D.,Yang, G.-W., Han, K.-L. 2000. Erratum to “Quasiclassical calculation of the chemical reaction Sr+HF” , Chemical Physics, 255: 283.
  • McGuire, M. J., Piecuch, P., Kowalski, K., Kucharski, S. A., Musia, M. 2004. Renormalized Coupled-Cluster Calculations of Reactive Potential Energy Surfaces: The BeFH System, Journal of Physical Chemistry A, 108: 8878.
  • Weck, P. F., Balakrishnan, N. 2005. Heavy atom tunneling in chemical reactions: Study of H+LiF collisions, The Journal of Chemical Physics, 122: 234310.
  • Sanz, C., Avoird, Ad van der, Roncero, O. 2005. Collisional and photoinitiated reaction dynamics in the ground electronic state of Ca–HCl, The Journal of Chemical Physics, 123: 064301.
  • Kikuchi, K., Hoshi, M., Niwa, T., Takahashi, Y. , Miyashi, T. 1991. Heavy-atom effects on the excited singlet-state electron-transfer reaction. Journal of Physical Chemistry, 95: 38-42.
  • Verbockhaven, G., Sanz, C., Groenenboom, G. C., Roncero, O., Avoird, A. V. D. 2005. Ab initio potential-energy surface for the reaction Ca+HCl→CaCl+H Ca+HCl→CaCl+H, The Journal of Chemical Physics, 122: 204307.
  • Garcia, E., Lagana, A. 1984. A fit of the potential energy surface of the LiHF system. Molecular Physics, 52: 1115-1124.
  • Yang, C.-Y., Klippenstein, S. J., Kress, J. D., Pack, R. T., Parker, G. A., Lagana, A. 1994. Comparison of transition state theory with quantum scattering theory for the reaction Li + HF LiF+H, Journal of Chemical Physics, 100: 4917.
  • Weck, P. F., Balakrihnan, N. 2005. Quantum Dynamics of the Li+HF H+LiF Reaction at Ultralow Temperatures, The Journal of Chemical Physics, 122: 154309.
  • Sanz, C., Avoird, A. V. D., Roncero, O. 2005. Collisional and Photoinitiated Reaction Dynamics in the Ground Electronic State of Ca-HCl, The Journal of chemical Physics, 123: 064301.
  • Gray, S. K., Balint-Kurti, G. G. 1998. Quantum Dynamics with Real Wave Packets, Including Application to three-dimensional D+H2 DH+H Reactive Scattering, Journal of Chemical Physics, 108: 950.
  • Meijer, A. J. H. M., Goldfield, E. M., Gray, S. K., Balint-Kurti, G. G. 1998. Flux Analysis for Calculating Reaction Probabilities with Real Wave Packets. Chemical Physics Letters, 293: 270-276.
  • Hankel, M., Balint- Kurti, G. G., Gray, S. K. 2003. Sinc Wave Packets: New Form of Wave Packet for Time-Dependent Quantum Mechanical Reactive Scattering Calculations, International Journal of Quantum Chemistry, 92: 205-211.
  • Miquel, I., Gonzalez, M., Sayos, R., Balint-Kurti, G. G., Gray, S. K., Goldfield, E. M. 2003. Quantum Reactive Scattering Calculations of Cross Sections and Rate Constants for the N+O2  O+NO Reaction, Journal of Chemical Physics, 118: 3111.
  • Hankel, M., Balint-Kurti, G. G., Gray, S. K. 2001. Quantum Mechanical Calculation of Reaction Probabilities and Branching Ratios for the O +HD  OH(OD) + D(H) Reaction on the XA’ and 11A’’ Adiabatic Potential Energy Surfaces. Journal of Physical Chemistry A, 105: 2330-2339.
  • Hankel, M., Balint-Kurti, G. G., Gray, S. K. 2000. Quantum Mechanical Calculation of Product state Distributions for the O+H2 OH+H Reaction on the Ground electronic State Surface. Journal of Chemical Physics, 113: 9658.
  • Gray, S. K., Goldfield, E. M., Schatz, G. C., Balint-Kurti, G. G. 1999. Helicity Decoupled Quantum Dynamics and Capture Model Cross Sections and Rate Constants for O+H2 OH+H. Physical Chemistry Chemical Physics, 1: 1141-1148.
  • Zhu, W., Wang, D., Zhang, J. Z. H. 1997. Quantum Dynamics Study of Li+HF Reaction, Theoretical Chemistry Accounts, 96: 31-38.
  • Lin, S. Y., Guo, H. 2004. Quantum Wave Packet Studies of the C+H2  CH +H Reaction: Integral Cross Section and Rate Constant, Journal of Physical Chemistry A, 108: 2141.
  • Liu, J., Fu, B., Zhang, D. 2009. Quantum Wave Packet Study of the C+H2 Reaction, Chemical Physics Letters, 480: 46-48.
  • Lin, S. Y., Guo, H. 2004. Quantum Integral Cross-Section and Rate Constant of the O+H2OH+H Reaction on a New Potential Energy Surface, Chemical Physics Letters, 385: 193-197.
  • Monnerville, M., Peoux, G., Briquez, S., Halvick, P. 2000. Three-Dimensional Time-Dependent Study of a Reaction Involving Three Different Heavy Atoms and a Very Deep Well: Application to the C+NO CN +O Exchange Reaction, Chemical Physics Letters, 322: 157-165.
  • Lin, S. Y., Sun, Z., Guo, H., Zhang, D. H., Honvault, P., Xie, D., Lee, S. 2008, Fully Coriolis-Coupled Quantum Studies of the H+O2OH+O Reaction on an Accurate Potential Energy Surface: Integral Cross Sections and Rate Constants. Journal of Physical Chemistry A, 112: 602-611.
  • Tang, X., Houchins, C., Lau, K., Ng, C. Y., Dressler, R. A., Chiv, Y., Chu, T., Han, K. -L. 2007. A Time-Dependent Wave Packet Quantum Scattering Study of the Reaction HD+ +He  HeH+ (HeD+) + D(H). Journal of Chemical Physics, 127: 164318.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Ezman Karabulut

Yayımlanma Tarihi 27 Aralık 2016
Gönderilme Tarihi 6 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE E. Karabulut, “Quantum Dynamic Effects at Insertion Minimum Reaction: H+LiF Reaction”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 2, 2016, doi: 10.17798/bitlisfen.282246.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr