BibTex RIS Kaynak Göster

-

Yıl 2014, Cilt: 3 Sayı: 1, 81 - 93, 01.06.2014
https://doi.org/10.17798/beufen.47367

Öz

Tolerance against salt stress in plants includes substantial changes in gene expression which is accompanied with changes in composition of transcriptome, metabolome and proteome. Proteins are directly involved in plant stress response. Therefore,proteomics studies can explain the possible relationships between salinity tolerance and functional proteins. The identification of the proteins that are involved in responses to salinity stress could lead to the development of transgenic plants that have an enhanced tolerance to salinity. In this review, the recent proteomics studies to the analysis of the responses of plants to salinity stress, the possible mechanisms in response to salinity stress and the changes in the level of proteins involved in metabolic pathways are discussed

Kaynakça

  • Li B., He L., Guo S., Li J., Yang Y., Yan B. 2013. Proteomics Reveal Cucumber Spd-Responses under Normal Condition and Salt Stress, Plant Physiology and Biochemistry, 67: 7-14.
  • Qureshi M. I., Qadir S., Zolla L. 2007. Proteomics-Based Dissection of Stress-Responsive Pathways in Plants, Journal of Plant Physiology, 164: 1239-1260.
  • Abbasi F. M., Komatsu S. 2004. A Proteomic Approach to Analyze Salt- Responsive Proteins in Rice Leaf Sheath, Proteomics, 4: 2072-2081.
  • Dani V., Simon W., Duranti M., Croy, R. 2005. Changes in the Tobacco Leaf Apoplast Proteome in Response to Salt Stress, Proteomics, 5: 737-745.
  • Liu Y., Du H., He X., Huang B., Wang Z. 2012. Identification of Differentially Expressed Salt- Responsive Proteins in Roots of Two Perennial Grass Species Contrasting in Salinity Tolerance, Journal of Plant Physiology, 169: 117-126
  • Suzuki N., Koussevitzky S., Mittler R., Miller G. 2012. ROS and Redox Signalling in the Response of Plants to Abiotic Stress, Plant Cell and Environment, 35: 259-270.
  • Gill S. S., Tuteja N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants, Plant Physiology and Biochemistry, 48: 909-930.
  • Brugnoli E., Bjorkman O. 1992. Growth of Cotton under Continuous Salinity Stress: Influence on Allocation Pattern, Stomatal and Non-Stomatal Components of Photosynthesis and Dissipation of Excess Light Energy, Planta, 187: 335-347.
  • Qiu N., Lu C. 2003. Enhanced Tolerance for Photosynthesis against High Temperature Damage in Salt Adapted Halophyte Atriplex centralasiatica, Plant Cell and Environment, 26: 1137-1145.
  • Zhang H., Han B., Wang T., Chen S. 2012. Mechanisms of Plant Salt Response: Insights from Proteomics, Journal of Proteome Research, 11: 49-67.
  • Zouni A. 2001. Crystal Structure of Photosystem II from Synechococcus elongatus at 3.8A° Resolution, Nature, 409: 739-743.
  • Ruban A.V., Wentworth M., Yakushevska A. E., Andersson J., Lee P. J., Keegstra W., Dekker J. P., Boekema E. J., Jansson S., Horton P. 2003. Plants Lacking the Main Light-Harvesting Complex Retain Photosystem II Macro-Organization, Nature, 421: 648-652.
  • Wykoff D. D., Davies J. P., Melis A., Grossman A. R. 1998. The Regulation of Photosynthetic Electron Transport during Nutrient Deprivation in Chlamydomonas reinhardtii, Plant Physiology, 117: 129-139.
  • Silva P., Thompson E., Bailey S., Kruse O., Mullineaux C. W., Robinson C., Mann N. H., Nixon P. J. 2003. FtsH is Involved in the Early Stages of Repair of Photosystem II In Synechocystis Sp PCC 6803, The Plant Cell, 15: 2152-2164.
  • Yamamoto Y. 2001. Quality Control of Photosystem II, Plant and Cell Physiology, 42: 121-128.
  • Pang Q. Y., Chen S. X., Dai S. J., Chen Y. Z., Wang Y., Yan X. 2010. Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila, Journal of Proteome Research, 9: 2584-2599.
  • Bandehagh A., Salekdeh G. H., Toorchi M., Mohammadi A., Komatsu S. 2011. Comparative Proteomic Analysis of Canola Leaves under Salinity Stress, Proteomics, 11: 1965–75.
  • Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi B., Struik P.C. 2012. The Proteome Response of Salt-Resistant and Salt-Sensitive Barley Genotypes to Long-Term Salinity Stress, Molecular Biology Reports, 39: 6387-6397.
  • Wang X. C, Fan P. X., Song H. M., Chen X. Y., Li X. F., Li Y. X. 2009. Comparative Proteomic Analysis of Differentially Expressed Proteins in Shoots of Salicornia europaea under Different Salinity, Journal of Proteome Research, 8: 3331-3345.
  • Xu C., Sibicky T., Huang B. 2010. Protein Profile Analysis of Salt-Responsive Proteins in Leaves and Roots in Two Cultivars of Creeping Bentgrass Differing in Salinity Tolerance, Plant Cell Reports, 29: 595-615.
  • Zörb C., Schmitt S., Neeb A., Karl S., Linder M., Schubert S. 2004. The Biochemical Reaction of Maize (Zea mays L.) to Salt Stress is Characterized by a Mitigation of Symptoms and not by a Specific Adaptation, Plant Science, 167: 91-100.
  • Yu J. J., Chen S. X., Zhao Q., Wang T., Yang C. P., Diaz C., Sun G. R., Dai S. J. 2011. Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora, Journal of Proteome Research, 10: 3852-3870.
  • Li W., Zhang C. Y., Lu Q. T., Wen X. G., Lu C. M. 2011. The Combined Effect of Salt Stress and Heat Shock on Proteome Profiling in Suaeda salsa, Journal of Plant Physiology, 168: 1743- 1752.
  • Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Lagana A. 2008. Identification of Changes in Triticum durum L. Leaf Proteome in Response to Salt Stress by Two-Dimensional Electrophoresis and MALDI-TOF Mass Spectrometry, Analytical and Bioanalytical Chemistry, 391: 381-390.
  • Moller I. M. 2001. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species, Annual Review of Plant Physiology and Plant Molecular Biology, 52: 561-591.
  • Jiang Y., Deyholos M. 2006. Comprehensive Transcriptional Profiling of NaCl-Stressed Arabidopsis Roots Reveals Novel Classes of Responsive Genes, BMC Plant Biology, 6: 25.
  • Jiang Y., Yang B., Harris N. S., Deyholos M. K. 2007. Comparative Proteomic Analysis of NaCl Stress-Responsive Proteins in Arabidopsis Roots, Journal of Experimental Botany, 58: 3591- 3607.
  • Peng Z. Y., Wang M. C., Li F., Lu H. J., Li C. L., Xia G. M. A. 2009. Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat, Molecular Cell Proteomics, 8: 2676-2686.
  • Du C. X., Fan H. F., Guo S. R., Tezuka T., Li J. 2010. Proteomic Analysis of Cucumber Seedling Roots Subjected to Salt Stress, Phytochemistry, 71: 1450-1459.
  • Li X. J., Yang M. F., Chen H., Qu L. Q., Chen F., Shen S. H. 2010. Abscisic Acid Pretreatment Enhances Salt Tolerance of Rice Seedlings: Proteomic Evidence, Biochimica et Biophysica Acta, 1804: 929-940.
  • Manaa A., Ben Ahmed H., Valot B., Bouchet J. P., Aschi-Smiti S., Causse M., Faurobert M. 2011. Salt and Genotype Impact on Plant Physiology and Root Proteome Variations in Tomato, Journal of Experimental Botany, 62: 2797-2813.
  • Zhou S. P., Sauvé R. J., Liu Z., Reddy S., Bhatti S., Hucko S. D., Fish T., Thannhauser T. W. 2011. Identification of Salt-Induced Changes in Leaf and Root Proteomes of the Wild Tomato, Solanum chilense, Journal of American Society of Horticultural Science, 136: 288-302.
  • Nam M., Huh S., Kim K., Park W. 2012. Comparative Proteomic Analysis of Early Salt Stress- Responsive Proteins in Roots of Snrk2 Transgenic Rice, Proteome Science, 10: 25.
  • Wang M. C., Peng Z. Y., Li C. L., Li F., Liu C., Xia G. M. 2008. Proteomic Analysis on a High Salt Tolerance Introgression Strain of Triticum aestivum/Thinopyrum tonticum, Proteomics, 8: 1470-1489.
  • Das A. M. 2003. Regulation of the Mitochondrial ATP-Synthase in Health and Disease, Molecular Genetics and Metabolism, 79: 71-82.
  • Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. 2010. Reactive Oxygen Species Homeostasis and Signalling during Drought and Salinity Stresses, Plant Cell and Environment, 33: 453-467.
  • Parida A. K. Das A. B. 2005. Salt Tolerance and Salinity Effects on Plants: A Review, Ecotoxicology and Environmental Safety, 60: 324-349.
  • Alscher R. G., Erturk N., Heath L. S. 2002. Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants, Journal of Experimental Botany, 53: 1331-1341.
  • Zhao Q., Zhang H., Wang T., Chen S., Dai S. 2013. Proteomics-Based Investigation of Salt- Responsive Mechanisms in Plant Roots, Journal of Proteomics, 82: 230-253.
  • Del Rio L. A., Corpas F. J., Sandalio L. M., Palma J. M., Gomez M. 2002. Reactive Oxygen Species, Antioxidant Systems and Nitric Oxide in Peroxisomes, Journal of Experimental Botany, 53: 1255-1572.
  • Kim D.-W., Rakwal R., Agarwal G.-K., Jung Y.-H., Shibato J., Jwa N.-S., Iwahashi Y., Iwahashi H., Kim D. H., Shim leS., Usui K. 2005. A Hydroponic Rice Seedling Culture Model System for Investigating Proteome of Salt Stress in Rice Leaf, Electrophoresis, 26: 4521-4539.
  • Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., Molassiotis A., Job D. 2009. Proteomics Reveals the Overlapping Roles of Hydrogen Peroxide and Nitric Oxide in the Acclimation of Citrus Plants to Salinity, Plant Journal, 60: 795-804.
  • Witzel K., Weidner A., Surabhi G.-K., Börner A., Mock H.-P. 2009. Salt Stress-Induced Alterations in the Root Proteome of Barley Genotypes with Contrasting Response towards Salinity, Journal of Experimental Botany, 60: 3545-3557.
  • Sugimoto M., Takeda K. 2009. Proteomic Analysis of Specific Proteins in the Root of Salt- Tolerant Barley, Bioscience Biotechnology and Biochemistry, 73: 2762-2765.
  • Yoshimura K., Miyao K., Gaber A., Takeda T., Kanaboshi H., Miyasaka H., Shigeoka S. 2004. Enhancement of Stress Tolerance in Transgenic Tobacco Plants Overexpressing Chlamydomonas Glutathione Peroxidase in Chloroplasts or Cytosol, Plant Journal, 37: 21-33.
  • Cummins I., Cole D. J., Edwards R. A. 1999. Role for Glutathione Transferases Functioning as Glutathione Peroxidases in Resistance to Multiple Herbicides in Black-Grass, Plant Journal, 18: 285-292.
  • Ruan S. L., Ma H. S., Wang S. H., Fu Y. P., Xin Y., Liu W. Z., Wang F., Tong J. X., Wang S. Z., Chen H. Z. 2011. Proteomic Identification of Oscyp2, a Rice Cyclophilin that Confers Salt Tolerance in Rice (Oryza sativa L.) Seedlings When Overexpressed, BMC Plant Biology, 11: 34.
  • Swami A. K., Alam S., Sengupta N., Sarin R. 2011. Differential Proteomic Analysis of Salt Stress Response in Sorghum bicolor Leaves, Environmental and Experimental Botany, 71: 321-328.
  • Horling F., Lamkemeyer P., Konig J., Finkemeier I., Kandlbinder A., Baier M., Dietz K.J. 2003. Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis, Plant Physiology, 131: 317-325.
  • Dietz K. J. 2011. Peroxiredoxins in Plants and Cyanobacteria, Antioxidant and Redox Signaling, 15: 1129-1159.
  • Kim Y. O., Pan S., Jung C. H., Kang H. A. 2007. Zinc Finger-Containing Glycine-Rich RNA- Binding Protein, Atrz-1a, has A Negative Impact on Seed Germination and Seedling Growth of Arabidopsis thaliana under Salt or Drought Stress Conditions, Plant Cell Physiology, 48: 1170- 1181.
  • Zörb C., Schmitt S., Muhling K. H. 2010. Proteomic Changes in Maize Roots after Short-Term Adjustment to Saline Growth Conditions, Proteomics, 10: 4441-4449.
  • Zhu J. K. 2002. Salt and Drought Stress Signal Transduction in Plants, Annual Reviews of Plant Biology, 53: 247-273.
  • Cheng Y. W., Qi Y. C., Zhu Q., Chen X., Wang N., Zhao X., Chen H. Y., Cui X. J., Xu L. L., Zhang W. 2009. New Changes in the Plasma-Membrane-Associated Proteome of Rice Roots under Salt Stress, Proteomics, 9: 3100-3114.
  • Zhang L., Tian L. H., Zhao J. F., Song Y., Zhang C. J., Guo Y. 2009. Identification of an Apoplastic Protein Involved in the Initial Phase of Salt Stress Response in Rice Root by Two- Dimensional Electrophoresis, Plant Physiology, 149: 916-928.
  • Cao Y. R., Chen S. Y., Zhang J. S. 2008. Ethylene Signaling Regulates Salt Stress Response: An Overview, Plant Signaling and Behavior, 3: 761-763.
  • Mahajan S., Pandey G. K., Tuteja N. 2008. Calcium- and Salt-Stress Signaling in Plants: Shedding Light on SOS Pathway, Archives of Biochemistry and Biophysics, 471: 146-158.
  • Misra S., Wu Y., Venkataraman G., Sopory S. K., Tuteja N. 2007. Heterotrimeric G-Protein Complex and G-Protein-Coupled Receptor from a Legume (Pisum sativum): Role in Salinity and Heat Stress and Cross-Talk with Phospholipase C, Plant Journal, 51: 656-669.
  • Perfus-Barbeoch L., Jones A.M., Assmann S. M. 2004. Plant Heterotrimeric G Protein Function: Insights from Arabidopsis and Rice Mutants, Current Opinion in Plant Biology, 7: 719-731.
  • Bolte S., Schiene K., Dietz K.-J. 2000. Characterization of a Small GTP-Binding Protein of the Rab 5 Family in Mesembryanthemum crystallinum with Increased Level of Expression during Early Salt Stress, Plant Molecular Biology, 42: 923-935.
  • Wu K., Rooney M. F., Ferl R. J. 1997. The Arabidopsis 14-3-3 Multigene Family, Plant Physiology, 114: 1421-1431.
  • Palmgren M. G. 1998. Proton Gradients and Plant Growth: Role of The Plasma Membrane H+- ATPase, Advanced in Botanical Research, 28: 1–70.
  • Malakshah S. N., Rezaei M. H., Heidari M., Salekdeh G. H. 2007. Proteomics Reveals New Salt Responsive Proteins Associated with Rice Plasma Membrane, Bioscience Biotechnology and Biochemistry, 71: 2144-2154.
  • Wrzaczek M., Hirt H. 2001. Plant MAP Kinase Pathways: How Many and What For? Biology of The Cell, 93: 81-87.
  • Ndimba B. K., Chivasa S., Simon W. J., Slabas A. R. 2005. Identification of Arabidopsis Salt and Osmotic Stress Responsive Proteins using Two-Dimensional Difference Gel Electrophoresis and Mass Spectrometry, Proteomics, 5: 4185-4196.
  • Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta A., Chakraborty S., Chakraborty N. 2011. Analysis of the Grasspea Proteome and Identification of Stress-Responsive Proteins upon Exposure to High Salinity, Low Temperature, and Abscisic Acid Treatment, Phytochemistry, 72: 1293-1307.
  • Hasegawa P. M., Bressan R. A., Zhu J.-K., Bohnert H. J. 2000. Plant Cellular and Molecular Responses to High Salinity, Annual Reviews of Plant Physiology and Plant Molecular Biology, 51: 463-499.
  • Sanders D., Pelluox J., Brownlee C., Harper J. F. 2002. Calcium at the Crosse Roads of Signaling, Plant Cell, 1: 401-417.
  • Shi H. Z., Ishitani M., Kim C. S., Zhu J. K. 2000. The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter, Proceedings of The National Academy of Sciences, USA, 97: 6896-6901.
  • Chitteti B. R., Peng Z. H. 2007. Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryza sativa) Roots, Journal of Proteome Research, 6: 1718-1727.
  • Gong Z. Z., Koiwa H., Cushman M. A., Ray A., Bufford D., Kore-Eda S., Matsumoto T. K., Zhu J. H., Cushman J. C., Bressan R. A., Hasegawa P. M. 2001. Genes that are Uniquely Stress Regulated in Salt Overly Sensitive (SOS) Mutants, Plant Physiology, 126: 363-375.
  • Chinnusamy V., Jagendorf A., Zhu J. K. 2005. Understanding and Improving Salt Tolerance in Plants: Genetic and Metabolic Engineering for Value-Added Traits, Crop Science Society of America, 45: 437-448.
  • Barkla B. J., Vera-Estrella R., Camacho-Emiterio J., Pantoja O. 2002. Na+/H+ Exchange in the Halophyte Mesembryanthemum crystallinum is Associated with Cellular Sites of Na+ Storage, Functional Plant Biology, 29: 1017-1024.
  • Yazaki K. 2006. ABC Transporters Involved in the Transport of Plant Secondary Metabolites, FEBS Letters, 580: 1183-1191.
  • Lee E. K., Kwon M., Ko J.-H., Yi H., Hwang M. G., Chang S., Cho M. H. 2004. Binding of Sulfonylurea by AtMRP5, an Arabidopsis Multidrug Resistance-Related Protein That Functions in Salt Tolerance, Plant Physiology, 134: 528-538.
  • Moons A. 2003. Ospdr9, which Encodes a PDR-Type ABC Transporter, is Induced by Heavy Metals, Hypoxic Stress and Redox Perturbations in Rice Roots, FEBS Letters, 553: 370-376.
  • Dreyer I., Uozumi N. 2011. Potassium Channels in Plant Cells, FEBS Journal, 278: 4293-4303.
  • Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H. J. 2001. Gene Expression Profiles during the Initial Phase of Salt Stress in Rice, Plant Cell, 13: 889-905.
  • Laohavisit A., Brown A. T., Cicuta P., Davies J. M. 2010. Annexins: Components of the Calcium and Reactive Oxygen Signaling Network, Plant Physiology, 152: 1824-1829.
  • Yan S., Tang Z., Su W., Sun W. 2005. Proteomic Analysis of Salt Stress-Responsive Proteins in Rice Root, Proteomics, 5: 235-244.
  • Shavrukov Y., Gupta N., Miyazaki J., Baho M., Chalmers K., Tester M., Langridge P., Collins N. 2010. HvNAX3-A Locus Controlling Shoot Sodium Exclusion Derived from Wild Barley (Hordeum vulgare Ssp. spontaneum), Functional and Integrative Genomics, 10: 277-291.
  • Luan S. 2002. Signaling Drought in Guard Cells, Plant Cell and Environment, 25: 229-237.
  • Campetelli A. N., Previtali G., Arce C. A., Barra H. S., Casale C. H. 2005. Activation of the Plasma Membrane H+-Atpase of Saccharomyces cerevisiae by Glucose is Mediated by Dissociation of the H+-Atpase-Acetylated Tubulin Complex, FEBS Journal, 272: 5742-5752.
  • Drykova D., Cenklova V., Sulimenko V., Volc J., Draber P., Binarova P. 2003. Plant Gamma- Tubulin Interacts With Alpha Beta-Tubulin Dimers and Forms Membrane-Associated Complexes, Plant Cell, 15: 465-480.
  • Liepman A. H., Wightman R., Geshi N., Turner S. R., Scheller H. V. 2010. Arabidopsis-A Powerful Model System for Plant Cell Wall Research, Plant Journal, 61: 1107-1121.
  • Degenhardt B., Gimmler H. 2000. Cell Wall Adaptations to Multiple Environmental Stresses in Maize Roots, Journal of Experimental Botany, 51: 595-603.
  • Neves G. Y. S., Marchiosi R., Ferrarese M. L. L., Siqueira-Soares R. C., Ferrarese-Filho O. 2010. Root Growth Inhibition and Lignification Induced By Salt Stress in Soybean, Journal of Agronomy and Crop Science, 196: 467-473.
  • Sánchez-Aguayo I., Rodríguez-Galán J. M., García R., Torreblanca J., Pardo J. M. 2004. Salt Stress Enhances Xylem Development and Expression of S-Adenosyl-L-Methionine Synthase in Lignifying Tissues of Tomato Plants, Planta, 220: 278-285.
  • Bonawitz N. D., Chapple C. 2010. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype, Annual Reviews of Genetics, 44: 337-363.
  • Pakusch A. E., Kneusel R. E., Matern U. 1989. S-Adenosyl-L Methionine:Transcaffeoyl- Coenzyme A 3-O-Methyltransferase from Elicitor-Treated Parsley Cell Suspension Cultures, Archives of Biochemistry and Biophysics, 271: 488-494.
  • Zhong R., Morrison III W. H., Negrel J., Ye Z. H. 1998. Dual Methylation Pathways in Lignin Biosynthesis, Plant Cell, 10: 2033-2046.
  • Veeranagamallaiah G., Jyothsnakumari G., Hippeswamy M., Reddy P. C. O., Surabhi G.-K., Sriranganaykulu G., Manesh Y., Rajasekhar B., Madhurarekha C.H., Sudhakar C. 2008. Proteomic analysis of Salt Stress Responses in Foxtail Millet (Setaria italica L. Cv. Prasad) Seedlings, Plant Science, 175: 631-641.
  • Yeo A. R., Flowers S. A., Rao G., Welfare K., Senanayake N., Flower T. J. 1999. Silicon Reduces Sodium Uptake in Rice (Oryza sativa L.) in Saline Conditions and This is Accounted for by a Reduction in the Transpirational Bypass Flow, Plant Cell and Environment, 22: 559-565.

Tuz Stresi Altındaki Bitkilerin Metabolik Yollarındaki Proteom Değişimleri

Yıl 2014, Cilt: 3 Sayı: 1, 81 - 93, 01.06.2014
https://doi.org/10.17798/beufen.47367

Öz

Bitkilerde tuz stresine tolerans transkriptom, proteom ve metabolom kompozisyonundaki değişikliklere eşlik eden gen ekspresyonundaki önemli değişiklikleri kapsamaktadır. Proteinler direkt olarak stres cevaplarında fonksiyon görmektedir. Bu nedenle, proteomik çalışmalar tuz stresine tolerans ve fonksiyonel proteinler arasındaki muhtemel ilişkileri açıklayabilmektedir. Tuz stresine cevapta fonksiyon gören proteinlerin teşhisi tuza toleranslı transgenik bitkilerin geliştirilmesinde önemlidir. Bu derlemede, bitkilerin tuz stresine cevaplarını analiz etmek için yapılan son proteomik çalışmalar, tuz stresine cevapta muhtemel mekanizmalar ve metabolik yollarda fonksiyon gören proteinlerin seviyesindeki değişimler tartışılmıştır.

Kaynakça

  • Li B., He L., Guo S., Li J., Yang Y., Yan B. 2013. Proteomics Reveal Cucumber Spd-Responses under Normal Condition and Salt Stress, Plant Physiology and Biochemistry, 67: 7-14.
  • Qureshi M. I., Qadir S., Zolla L. 2007. Proteomics-Based Dissection of Stress-Responsive Pathways in Plants, Journal of Plant Physiology, 164: 1239-1260.
  • Abbasi F. M., Komatsu S. 2004. A Proteomic Approach to Analyze Salt- Responsive Proteins in Rice Leaf Sheath, Proteomics, 4: 2072-2081.
  • Dani V., Simon W., Duranti M., Croy, R. 2005. Changes in the Tobacco Leaf Apoplast Proteome in Response to Salt Stress, Proteomics, 5: 737-745.
  • Liu Y., Du H., He X., Huang B., Wang Z. 2012. Identification of Differentially Expressed Salt- Responsive Proteins in Roots of Two Perennial Grass Species Contrasting in Salinity Tolerance, Journal of Plant Physiology, 169: 117-126
  • Suzuki N., Koussevitzky S., Mittler R., Miller G. 2012. ROS and Redox Signalling in the Response of Plants to Abiotic Stress, Plant Cell and Environment, 35: 259-270.
  • Gill S. S., Tuteja N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants, Plant Physiology and Biochemistry, 48: 909-930.
  • Brugnoli E., Bjorkman O. 1992. Growth of Cotton under Continuous Salinity Stress: Influence on Allocation Pattern, Stomatal and Non-Stomatal Components of Photosynthesis and Dissipation of Excess Light Energy, Planta, 187: 335-347.
  • Qiu N., Lu C. 2003. Enhanced Tolerance for Photosynthesis against High Temperature Damage in Salt Adapted Halophyte Atriplex centralasiatica, Plant Cell and Environment, 26: 1137-1145.
  • Zhang H., Han B., Wang T., Chen S. 2012. Mechanisms of Plant Salt Response: Insights from Proteomics, Journal of Proteome Research, 11: 49-67.
  • Zouni A. 2001. Crystal Structure of Photosystem II from Synechococcus elongatus at 3.8A° Resolution, Nature, 409: 739-743.
  • Ruban A.V., Wentworth M., Yakushevska A. E., Andersson J., Lee P. J., Keegstra W., Dekker J. P., Boekema E. J., Jansson S., Horton P. 2003. Plants Lacking the Main Light-Harvesting Complex Retain Photosystem II Macro-Organization, Nature, 421: 648-652.
  • Wykoff D. D., Davies J. P., Melis A., Grossman A. R. 1998. The Regulation of Photosynthetic Electron Transport during Nutrient Deprivation in Chlamydomonas reinhardtii, Plant Physiology, 117: 129-139.
  • Silva P., Thompson E., Bailey S., Kruse O., Mullineaux C. W., Robinson C., Mann N. H., Nixon P. J. 2003. FtsH is Involved in the Early Stages of Repair of Photosystem II In Synechocystis Sp PCC 6803, The Plant Cell, 15: 2152-2164.
  • Yamamoto Y. 2001. Quality Control of Photosystem II, Plant and Cell Physiology, 42: 121-128.
  • Pang Q. Y., Chen S. X., Dai S. J., Chen Y. Z., Wang Y., Yan X. 2010. Comparative Proteomics of Salt Tolerance in Arabidopsis thaliana and Thellungiella halophila, Journal of Proteome Research, 9: 2584-2599.
  • Bandehagh A., Salekdeh G. H., Toorchi M., Mohammadi A., Komatsu S. 2011. Comparative Proteomic Analysis of Canola Leaves under Salinity Stress, Proteomics, 11: 1965–75.
  • Fatehi F., Hosseinzadeh A., Alizadeh H., Brimavandi B., Struik P.C. 2012. The Proteome Response of Salt-Resistant and Salt-Sensitive Barley Genotypes to Long-Term Salinity Stress, Molecular Biology Reports, 39: 6387-6397.
  • Wang X. C, Fan P. X., Song H. M., Chen X. Y., Li X. F., Li Y. X. 2009. Comparative Proteomic Analysis of Differentially Expressed Proteins in Shoots of Salicornia europaea under Different Salinity, Journal of Proteome Research, 8: 3331-3345.
  • Xu C., Sibicky T., Huang B. 2010. Protein Profile Analysis of Salt-Responsive Proteins in Leaves and Roots in Two Cultivars of Creeping Bentgrass Differing in Salinity Tolerance, Plant Cell Reports, 29: 595-615.
  • Zörb C., Schmitt S., Neeb A., Karl S., Linder M., Schubert S. 2004. The Biochemical Reaction of Maize (Zea mays L.) to Salt Stress is Characterized by a Mitigation of Symptoms and not by a Specific Adaptation, Plant Science, 167: 91-100.
  • Yu J. J., Chen S. X., Zhao Q., Wang T., Yang C. P., Diaz C., Sun G. R., Dai S. J. 2011. Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora, Journal of Proteome Research, 10: 3852-3870.
  • Li W., Zhang C. Y., Lu Q. T., Wen X. G., Lu C. M. 2011. The Combined Effect of Salt Stress and Heat Shock on Proteome Profiling in Suaeda salsa, Journal of Plant Physiology, 168: 1743- 1752.
  • Caruso G., Cavaliere C., Guarino C., Gubbiotti R., Foglia P., Lagana A. 2008. Identification of Changes in Triticum durum L. Leaf Proteome in Response to Salt Stress by Two-Dimensional Electrophoresis and MALDI-TOF Mass Spectrometry, Analytical and Bioanalytical Chemistry, 391: 381-390.
  • Moller I. M. 2001. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species, Annual Review of Plant Physiology and Plant Molecular Biology, 52: 561-591.
  • Jiang Y., Deyholos M. 2006. Comprehensive Transcriptional Profiling of NaCl-Stressed Arabidopsis Roots Reveals Novel Classes of Responsive Genes, BMC Plant Biology, 6: 25.
  • Jiang Y., Yang B., Harris N. S., Deyholos M. K. 2007. Comparative Proteomic Analysis of NaCl Stress-Responsive Proteins in Arabidopsis Roots, Journal of Experimental Botany, 58: 3591- 3607.
  • Peng Z. Y., Wang M. C., Li F., Lu H. J., Li C. L., Xia G. M. A. 2009. Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat, Molecular Cell Proteomics, 8: 2676-2686.
  • Du C. X., Fan H. F., Guo S. R., Tezuka T., Li J. 2010. Proteomic Analysis of Cucumber Seedling Roots Subjected to Salt Stress, Phytochemistry, 71: 1450-1459.
  • Li X. J., Yang M. F., Chen H., Qu L. Q., Chen F., Shen S. H. 2010. Abscisic Acid Pretreatment Enhances Salt Tolerance of Rice Seedlings: Proteomic Evidence, Biochimica et Biophysica Acta, 1804: 929-940.
  • Manaa A., Ben Ahmed H., Valot B., Bouchet J. P., Aschi-Smiti S., Causse M., Faurobert M. 2011. Salt and Genotype Impact on Plant Physiology and Root Proteome Variations in Tomato, Journal of Experimental Botany, 62: 2797-2813.
  • Zhou S. P., Sauvé R. J., Liu Z., Reddy S., Bhatti S., Hucko S. D., Fish T., Thannhauser T. W. 2011. Identification of Salt-Induced Changes in Leaf and Root Proteomes of the Wild Tomato, Solanum chilense, Journal of American Society of Horticultural Science, 136: 288-302.
  • Nam M., Huh S., Kim K., Park W. 2012. Comparative Proteomic Analysis of Early Salt Stress- Responsive Proteins in Roots of Snrk2 Transgenic Rice, Proteome Science, 10: 25.
  • Wang M. C., Peng Z. Y., Li C. L., Li F., Liu C., Xia G. M. 2008. Proteomic Analysis on a High Salt Tolerance Introgression Strain of Triticum aestivum/Thinopyrum tonticum, Proteomics, 8: 1470-1489.
  • Das A. M. 2003. Regulation of the Mitochondrial ATP-Synthase in Health and Disease, Molecular Genetics and Metabolism, 79: 71-82.
  • Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. 2010. Reactive Oxygen Species Homeostasis and Signalling during Drought and Salinity Stresses, Plant Cell and Environment, 33: 453-467.
  • Parida A. K. Das A. B. 2005. Salt Tolerance and Salinity Effects on Plants: A Review, Ecotoxicology and Environmental Safety, 60: 324-349.
  • Alscher R. G., Erturk N., Heath L. S. 2002. Role of Superoxide Dismutases (SODs) in Controlling Oxidative Stress in Plants, Journal of Experimental Botany, 53: 1331-1341.
  • Zhao Q., Zhang H., Wang T., Chen S., Dai S. 2013. Proteomics-Based Investigation of Salt- Responsive Mechanisms in Plant Roots, Journal of Proteomics, 82: 230-253.
  • Del Rio L. A., Corpas F. J., Sandalio L. M., Palma J. M., Gomez M. 2002. Reactive Oxygen Species, Antioxidant Systems and Nitric Oxide in Peroxisomes, Journal of Experimental Botany, 53: 1255-1572.
  • Kim D.-W., Rakwal R., Agarwal G.-K., Jung Y.-H., Shibato J., Jwa N.-S., Iwahashi Y., Iwahashi H., Kim D. H., Shim leS., Usui K. 2005. A Hydroponic Rice Seedling Culture Model System for Investigating Proteome of Salt Stress in Rice Leaf, Electrophoresis, 26: 4521-4539.
  • Tanou G., Job C., Rajjou L., Arc E., Belghazi M., Diamantidis G., Molassiotis A., Job D. 2009. Proteomics Reveals the Overlapping Roles of Hydrogen Peroxide and Nitric Oxide in the Acclimation of Citrus Plants to Salinity, Plant Journal, 60: 795-804.
  • Witzel K., Weidner A., Surabhi G.-K., Börner A., Mock H.-P. 2009. Salt Stress-Induced Alterations in the Root Proteome of Barley Genotypes with Contrasting Response towards Salinity, Journal of Experimental Botany, 60: 3545-3557.
  • Sugimoto M., Takeda K. 2009. Proteomic Analysis of Specific Proteins in the Root of Salt- Tolerant Barley, Bioscience Biotechnology and Biochemistry, 73: 2762-2765.
  • Yoshimura K., Miyao K., Gaber A., Takeda T., Kanaboshi H., Miyasaka H., Shigeoka S. 2004. Enhancement of Stress Tolerance in Transgenic Tobacco Plants Overexpressing Chlamydomonas Glutathione Peroxidase in Chloroplasts or Cytosol, Plant Journal, 37: 21-33.
  • Cummins I., Cole D. J., Edwards R. A. 1999. Role for Glutathione Transferases Functioning as Glutathione Peroxidases in Resistance to Multiple Herbicides in Black-Grass, Plant Journal, 18: 285-292.
  • Ruan S. L., Ma H. S., Wang S. H., Fu Y. P., Xin Y., Liu W. Z., Wang F., Tong J. X., Wang S. Z., Chen H. Z. 2011. Proteomic Identification of Oscyp2, a Rice Cyclophilin that Confers Salt Tolerance in Rice (Oryza sativa L.) Seedlings When Overexpressed, BMC Plant Biology, 11: 34.
  • Swami A. K., Alam S., Sengupta N., Sarin R. 2011. Differential Proteomic Analysis of Salt Stress Response in Sorghum bicolor Leaves, Environmental and Experimental Botany, 71: 321-328.
  • Horling F., Lamkemeyer P., Konig J., Finkemeier I., Kandlbinder A., Baier M., Dietz K.J. 2003. Divergent Light-, Ascorbate-, and Oxidative Stress-Dependent Regulation of Expression of the Peroxiredoxin Gene Family in Arabidopsis, Plant Physiology, 131: 317-325.
  • Dietz K. J. 2011. Peroxiredoxins in Plants and Cyanobacteria, Antioxidant and Redox Signaling, 15: 1129-1159.
  • Kim Y. O., Pan S., Jung C. H., Kang H. A. 2007. Zinc Finger-Containing Glycine-Rich RNA- Binding Protein, Atrz-1a, has A Negative Impact on Seed Germination and Seedling Growth of Arabidopsis thaliana under Salt or Drought Stress Conditions, Plant Cell Physiology, 48: 1170- 1181.
  • Zörb C., Schmitt S., Muhling K. H. 2010. Proteomic Changes in Maize Roots after Short-Term Adjustment to Saline Growth Conditions, Proteomics, 10: 4441-4449.
  • Zhu J. K. 2002. Salt and Drought Stress Signal Transduction in Plants, Annual Reviews of Plant Biology, 53: 247-273.
  • Cheng Y. W., Qi Y. C., Zhu Q., Chen X., Wang N., Zhao X., Chen H. Y., Cui X. J., Xu L. L., Zhang W. 2009. New Changes in the Plasma-Membrane-Associated Proteome of Rice Roots under Salt Stress, Proteomics, 9: 3100-3114.
  • Zhang L., Tian L. H., Zhao J. F., Song Y., Zhang C. J., Guo Y. 2009. Identification of an Apoplastic Protein Involved in the Initial Phase of Salt Stress Response in Rice Root by Two- Dimensional Electrophoresis, Plant Physiology, 149: 916-928.
  • Cao Y. R., Chen S. Y., Zhang J. S. 2008. Ethylene Signaling Regulates Salt Stress Response: An Overview, Plant Signaling and Behavior, 3: 761-763.
  • Mahajan S., Pandey G. K., Tuteja N. 2008. Calcium- and Salt-Stress Signaling in Plants: Shedding Light on SOS Pathway, Archives of Biochemistry and Biophysics, 471: 146-158.
  • Misra S., Wu Y., Venkataraman G., Sopory S. K., Tuteja N. 2007. Heterotrimeric G-Protein Complex and G-Protein-Coupled Receptor from a Legume (Pisum sativum): Role in Salinity and Heat Stress and Cross-Talk with Phospholipase C, Plant Journal, 51: 656-669.
  • Perfus-Barbeoch L., Jones A.M., Assmann S. M. 2004. Plant Heterotrimeric G Protein Function: Insights from Arabidopsis and Rice Mutants, Current Opinion in Plant Biology, 7: 719-731.
  • Bolte S., Schiene K., Dietz K.-J. 2000. Characterization of a Small GTP-Binding Protein of the Rab 5 Family in Mesembryanthemum crystallinum with Increased Level of Expression during Early Salt Stress, Plant Molecular Biology, 42: 923-935.
  • Wu K., Rooney M. F., Ferl R. J. 1997. The Arabidopsis 14-3-3 Multigene Family, Plant Physiology, 114: 1421-1431.
  • Palmgren M. G. 1998. Proton Gradients and Plant Growth: Role of The Plasma Membrane H+- ATPase, Advanced in Botanical Research, 28: 1–70.
  • Malakshah S. N., Rezaei M. H., Heidari M., Salekdeh G. H. 2007. Proteomics Reveals New Salt Responsive Proteins Associated with Rice Plasma Membrane, Bioscience Biotechnology and Biochemistry, 71: 2144-2154.
  • Wrzaczek M., Hirt H. 2001. Plant MAP Kinase Pathways: How Many and What For? Biology of The Cell, 93: 81-87.
  • Ndimba B. K., Chivasa S., Simon W. J., Slabas A. R. 2005. Identification of Arabidopsis Salt and Osmotic Stress Responsive Proteins using Two-Dimensional Difference Gel Electrophoresis and Mass Spectrometry, Proteomics, 5: 4185-4196.
  • Chattopadhyay A., Subba P., Pandey A., Bhushan D., Kumar R., Datta A., Chakraborty S., Chakraborty N. 2011. Analysis of the Grasspea Proteome and Identification of Stress-Responsive Proteins upon Exposure to High Salinity, Low Temperature, and Abscisic Acid Treatment, Phytochemistry, 72: 1293-1307.
  • Hasegawa P. M., Bressan R. A., Zhu J.-K., Bohnert H. J. 2000. Plant Cellular and Molecular Responses to High Salinity, Annual Reviews of Plant Physiology and Plant Molecular Biology, 51: 463-499.
  • Sanders D., Pelluox J., Brownlee C., Harper J. F. 2002. Calcium at the Crosse Roads of Signaling, Plant Cell, 1: 401-417.
  • Shi H. Z., Ishitani M., Kim C. S., Zhu J. K. 2000. The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter, Proceedings of The National Academy of Sciences, USA, 97: 6896-6901.
  • Chitteti B. R., Peng Z. H. 2007. Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryza sativa) Roots, Journal of Proteome Research, 6: 1718-1727.
  • Gong Z. Z., Koiwa H., Cushman M. A., Ray A., Bufford D., Kore-Eda S., Matsumoto T. K., Zhu J. H., Cushman J. C., Bressan R. A., Hasegawa P. M. 2001. Genes that are Uniquely Stress Regulated in Salt Overly Sensitive (SOS) Mutants, Plant Physiology, 126: 363-375.
  • Chinnusamy V., Jagendorf A., Zhu J. K. 2005. Understanding and Improving Salt Tolerance in Plants: Genetic and Metabolic Engineering for Value-Added Traits, Crop Science Society of America, 45: 437-448.
  • Barkla B. J., Vera-Estrella R., Camacho-Emiterio J., Pantoja O. 2002. Na+/H+ Exchange in the Halophyte Mesembryanthemum crystallinum is Associated with Cellular Sites of Na+ Storage, Functional Plant Biology, 29: 1017-1024.
  • Yazaki K. 2006. ABC Transporters Involved in the Transport of Plant Secondary Metabolites, FEBS Letters, 580: 1183-1191.
  • Lee E. K., Kwon M., Ko J.-H., Yi H., Hwang M. G., Chang S., Cho M. H. 2004. Binding of Sulfonylurea by AtMRP5, an Arabidopsis Multidrug Resistance-Related Protein That Functions in Salt Tolerance, Plant Physiology, 134: 528-538.
  • Moons A. 2003. Ospdr9, which Encodes a PDR-Type ABC Transporter, is Induced by Heavy Metals, Hypoxic Stress and Redox Perturbations in Rice Roots, FEBS Letters, 553: 370-376.
  • Dreyer I., Uozumi N. 2011. Potassium Channels in Plant Cells, FEBS Journal, 278: 4293-4303.
  • Kawasaki S., Borchert C., Deyholos M., Wang H., Brazille S., Kawai K., Galbraith D., Bohnert H. J. 2001. Gene Expression Profiles during the Initial Phase of Salt Stress in Rice, Plant Cell, 13: 889-905.
  • Laohavisit A., Brown A. T., Cicuta P., Davies J. M. 2010. Annexins: Components of the Calcium and Reactive Oxygen Signaling Network, Plant Physiology, 152: 1824-1829.
  • Yan S., Tang Z., Su W., Sun W. 2005. Proteomic Analysis of Salt Stress-Responsive Proteins in Rice Root, Proteomics, 5: 235-244.
  • Shavrukov Y., Gupta N., Miyazaki J., Baho M., Chalmers K., Tester M., Langridge P., Collins N. 2010. HvNAX3-A Locus Controlling Shoot Sodium Exclusion Derived from Wild Barley (Hordeum vulgare Ssp. spontaneum), Functional and Integrative Genomics, 10: 277-291.
  • Luan S. 2002. Signaling Drought in Guard Cells, Plant Cell and Environment, 25: 229-237.
  • Campetelli A. N., Previtali G., Arce C. A., Barra H. S., Casale C. H. 2005. Activation of the Plasma Membrane H+-Atpase of Saccharomyces cerevisiae by Glucose is Mediated by Dissociation of the H+-Atpase-Acetylated Tubulin Complex, FEBS Journal, 272: 5742-5752.
  • Drykova D., Cenklova V., Sulimenko V., Volc J., Draber P., Binarova P. 2003. Plant Gamma- Tubulin Interacts With Alpha Beta-Tubulin Dimers and Forms Membrane-Associated Complexes, Plant Cell, 15: 465-480.
  • Liepman A. H., Wightman R., Geshi N., Turner S. R., Scheller H. V. 2010. Arabidopsis-A Powerful Model System for Plant Cell Wall Research, Plant Journal, 61: 1107-1121.
  • Degenhardt B., Gimmler H. 2000. Cell Wall Adaptations to Multiple Environmental Stresses in Maize Roots, Journal of Experimental Botany, 51: 595-603.
  • Neves G. Y. S., Marchiosi R., Ferrarese M. L. L., Siqueira-Soares R. C., Ferrarese-Filho O. 2010. Root Growth Inhibition and Lignification Induced By Salt Stress in Soybean, Journal of Agronomy and Crop Science, 196: 467-473.
  • Sánchez-Aguayo I., Rodríguez-Galán J. M., García R., Torreblanca J., Pardo J. M. 2004. Salt Stress Enhances Xylem Development and Expression of S-Adenosyl-L-Methionine Synthase in Lignifying Tissues of Tomato Plants, Planta, 220: 278-285.
  • Bonawitz N. D., Chapple C. 2010. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype, Annual Reviews of Genetics, 44: 337-363.
  • Pakusch A. E., Kneusel R. E., Matern U. 1989. S-Adenosyl-L Methionine:Transcaffeoyl- Coenzyme A 3-O-Methyltransferase from Elicitor-Treated Parsley Cell Suspension Cultures, Archives of Biochemistry and Biophysics, 271: 488-494.
  • Zhong R., Morrison III W. H., Negrel J., Ye Z. H. 1998. Dual Methylation Pathways in Lignin Biosynthesis, Plant Cell, 10: 2033-2046.
  • Veeranagamallaiah G., Jyothsnakumari G., Hippeswamy M., Reddy P. C. O., Surabhi G.-K., Sriranganaykulu G., Manesh Y., Rajasekhar B., Madhurarekha C.H., Sudhakar C. 2008. Proteomic analysis of Salt Stress Responses in Foxtail Millet (Setaria italica L. Cv. Prasad) Seedlings, Plant Science, 175: 631-641.
  • Yeo A. R., Flowers S. A., Rao G., Welfare K., Senanayake N., Flower T. J. 1999. Silicon Reduces Sodium Uptake in Rice (Oryza sativa L.) in Saline Conditions and This is Accounted for by a Reduction in the Transpirational Bypass Flow, Plant Cell and Environment, 22: 559-565.
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mustafa Yıldız Bu kişi benim

Hakan Terzi Bu kişi benim

Nermin Akçalı Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2014
Gönderilme Tarihi 5 Ocak 2015
Yayımlandığı Sayı Yıl 2014 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE M. Yıldız, H. Terzi, ve N. Akçalı, “Tuz Stresi Altındaki Bitkilerin Metabolik Yollarındaki Proteom Değişimleri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 3, sy. 1, ss. 81–93, 2014, doi: 10.17798/beufen.47367.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr