Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 8 Sayı: 4, 1610 - 1620, 24.12.2019
https://doi.org/10.17798/bitlisfen.537840

Öz

Kaynakça

  • 1. Aktimur B., Gökpınar E. S. 2015. Katmanlı Üretimin Havacılıkdaki Uygulamaları, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, 3 (2): 463-469.2. Ayan Y., Kahraman N. 2018. Metal Eklemeli İmalat: Tel Ark Yöntemi ve Uygulamaları, International Journal of 3D Printing Technologies and Digital Industry, 2 (3): 74-84.3. Ding D., Pan Z. S., Cuiuri D., Li H. 2014. A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing, The International Journal of Advanced Manufacturing Technology, 73 (2014): 173-183.4. Turhan S., Özsoy A. 2016. DMLS Yöntemiyle İmal Edilen Ti6Al4V Alaşım Özelliklerine İşlem Parametrelerinin Etkisi, SDU International Journal of Technological Science, 8 (2): 15-27.5. Calignano F., Mandfredi D., Ambrosio E. P., Luliano L., Fino P. 2013. Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS. Int. J Adv Manufacturing Technology, 67 (2013): 2743-2751.6. Ponche R., Kerbrat O., Mognol P., Hascoet J. Y. 2014. A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process, Robotics and Computer-Integrated Manufacturing, 30 (4): 389-398.7. Liberini M., Astarita A., Campatelli G., Scippa A., Montevecchi F., Venturini G., Durante M., Boccarusso L., Memola F., Minutolo C., Squillace A. 2017. Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME '16, pp 470-474, 20- 22 July 2016, Ischia, Italy.8. Fang X., Zhang L., Li H., Li C., Huang K., Lu B. 2018. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process, Materials, 11 (2018): 812-824.9. Ge J., Lin J., Lei Y., Fu H. 2018. Location-Related Thermal History, Microstructure, and Mechanical Properties of Arc Additively Manufactured 2Cr13 Steel Using Cold Metal Transfer Welding, Materials Science & Engineering A, 715 (2018): 144-153.10. Hopkinson N., Hauge R., Dickens P. 2005. Rapid Manufacturing:An Industrial Revolution for the Digital Age, Edited by Wiley., Loughborough University, UK, 55-81.11. Prashanth K. G., Damodaram R., Scudino S., Wang Z., Rao K. P., Eckert J. 2014. Friction Welding of Al–12Si Parts Produced by Selective Laser Melting, Materials & Design, 57 (2014): 632-637.12. Çelik İ., Karakoç F., Çakır M. C., Duysak A. 2013. Hızlı Prototipleme Teknolojileri Ve Uygulama Alanları, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31 (2013): 53-70.13. Introductıon to Addıtıve Manufacturıng Technology 2015. http://eklemeliimalat.info.tr/ (Erişim Tarihi: 08.03.2019).14. Thijs L., Kempen K., Kruth J. P., Van Humbeeck, J. 2013. Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder, Acta Materialia, 61 (5): 1809-1819.15. Prashanth K. G., Scudino S., Klauss H. J., Surreddi K. B., Löber L., Wang Z., Eckert J. 2014. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment, Materials Science and Engineering: A, 590 (2014): 153-160.16. Scudino S., Unterdörfer C., Prashanth K. G., Attar H., Ellendt N., Uhlenwinkel V., Eckert J. 2015. Additive Manufacturing of Cu–10Sn Bronze, Materials Letters, 156 (2015): 202-204.17. Magalhaes E., Limae Silva A., Limae Silva S. 2017. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems, Applied Sciences, 7 (2): 122-137.18. Du Z., Chen H., Tan M. J., Bi G., Chua C. K. 2018. Investigation of Porosity Reduction, Microstructure and Mechanical Properties for Joining of Selective Laser Melting Fabricated Aluminium Composite via Friction Stir Welding, Journal Of Manufacturıng Processes, 36 (2018): 33-44.19. Scherillo F., Astarita A., Prisco U., Contaldi V., Di Petta P., Langella A., Squillace A. 2018. Friction Stir Welding of AlSi10Mg Plates Produced by Selective Laser Melting, Metallography, Microstructure, and Analysis, 7 (4): 457-463.20. Nahmany M., Stern A., Aghion E., Frage N. 2017. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology, Journal of Materials Engineering and Performance, 26 (10): 4813-4821.21. Nahmany M., Rosenthal I., Benishti I., Frage N., Stern A. 2015. Electron Beam Welding of AlSi10Mg Workpieces Produced by Selected Laser Melting Additive Manufacturing Technology, Additive Manufacturing, 8 (2015): 63-70.22. Kuryntsev S. V. 2018. The Influence of Pre-heat Treatment on Laser Welding of T-joints of Workpieces Made of Selective Laser Melting Steel and Cold Rolled Stainless Steel, Optics & Laser Technology, 107 (2018): 59-66.23. Fieger T. V., Sattler M. F., Witt G. 2018. Developing Laser Beam Welding Parameters for The Assembly of Steel SLM Parts for The Automotive İndustry, Rapid Prototyping Journal, 24 (8): 1288-1295.24. Yavuz H., Çam G. 2005. Lazer–Ark Hibrit Kaynak Yöntemi, Mühendis ve Makine Dergisi, 46 (543): 14-19.25. Casalino G., Campanelli S. L., Ludovico A. D. 2013. Laser-Arc Hybrid Welding of Wrought to Selective Laser Molten Stainless Steel, The International Journal of Advanced Manufacturing Technology, 68 (1-4): 209-216.26. Vora P., Mumtaz K., Todd I., Hopkinson N. 2015. Alsi12 İn-Situ Alloy Formation and Residual Stress Reduction Using Anchorless Selective Laser Melting, Additive Manufacturing, 7 (2015): 12-19.27. Trevisan F., Calignano F., Lorusso M., Pakkanen J., Aversa A., Ambrosio E., Manfredi D. 2017. On The Selective Laser Melting (SLM) of The AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties, Materials, 10 (1): 76-87.28. Liu Y., Yang Y., Wang D. 2016. A Study on The Residual Stress During Selective Laser Melting (SLM) of Metallic Powder, The International Journal of Advanced Manufacturing Technology, 87 (1-4): 647-656.29. Mercelis P., Kruth J. P. 2006. Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyping Journal, 12 (5): 254-265.30. Kouadri-Henni A., Seang C., Malard B., Klosek V. 2017. Residual Stresses Induced by Laser Welding Process in The Case of A Dual-Phase Steel DP600: Simulation and Experimental Approaches, Materials & Design, 123 (2017): 89-102.31. Bajpei T., Chelladurai H., Ansari M. Z. 2017. Experimental Investigation and Numerical Analyses of Residual Stresses and Distortions In GMA Welding of Thin Dissimilar AA5052-AA6061 Plates, Journal of Manufacturing Processes, 25 (2017): 340-350.32. Fu G., Lourenço M. I., Duan M., Estefen S. F. 2016. Influence of The Welding Sequence on Residual Stress and Distortion of Fillet Welded Structures. Marine Structures, 46 (2016): 30-55.33. Prashanth K. G., Damodaram R., Maity T., Wang P., Eckert J. 2017. Friction Welding of Selective Laser Melted Ti6Al4V Parts, Materials Science and Engineering: A, 704 (2017): 66-71.34. Liu C. M., Tian X. J., Tang H. B., Wang H. M. 2013. Microstructural Characterization of Laser Melting Deposited Ti–5Al-5Mo–5V–1Cr–1Fe Near β Titanium Alloy, Journal of Alloys and Compounds, 572 (2013): 17-24.35. Chen X., Zhang J., Chen X., Cheng X., Huang Z. 2018. Electron Beam Welding of Laser Additive Manufacturing Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si Titanium Alloy Thick Plate, Vacuum, 151 (2018): 116-121.36. Hu X., Xue Z., Zhao G., Yun J., Shi D., Yang X. 2019. Laser Welding of A Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Materials Science and Engineering: A, 745 (2019): 335-345.37. Özsoy K., Duman B. 2017. Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği, International Journal of 3d Printing Technologies and Digital Industry, 1 (1): 36-48.38. Yalçın B., Ergene B. 2017. Endüstride Yeni Eğilim Olan 3-D Eklemeli İmalat Yöntemi ve Metalurjisi. Süleyman Demirel Üniversitesi Uluslarası Teknolojik Bilimler Dergisi, 9(3): 65-88.39. Rubino F., Scherillo F., Franchitti S., Squillace A., Astarita A., Carlone P. 2019. Microstructure and Surface Analysis of Friction Stir Processed Ti-6Al-4V Plates Manufactured by Electron Beam Melting, Journal of Manufacturing Processes, 37 (2019): 392-401.40. Sun Y. Y., Wang P., Lu S. L., Li L. Q., Nai M. L. S., Wei J. 2019. Laser Welding of Electron Beam Melted Ti-6Al-4V To Wrought Ti-6Al-4V: Effect of Welding Angle on Microstructure and Mechanical Properties, Journal of Alloys and Compounds, 782 (2019): 967-972.41. Scherillo F., Astarita A., Carrino L., Pirozzi C., Prisco U., Squillace A. 2019. Linear Friction Welding of Ti-6Al-4V Parts Produced by Electron Beam Melting, Materials and Manufacturing Processes, 34 (2): 201-207.42. Sankar G. S., Karthik G. M., Mohammad A., Kumar R., Ram, G. J. 2019. Friction Welding of Electron Beam Melted γ-TiAl Alloy Ti–48Al–2Cr–2Nb, Transactions of the Indian Institute of Metals, 72 (1): 35-46.43. Wang P., Nai M. L. S., Sin W. J., Lu S., Zhang B., Bai J., Wei J. 2018. Realizing A Full Volume Component by In-Situ Welding During Electron Beam Melting Process, Additive Manufacturing, 22 (2018):375-380.

Katmanlı İmalat ile Üretilen Metal Malzemelerin Kaynak Kabiliyeti

Yıl 2019, Cilt: 8 Sayı: 4, 1610 - 1620, 24.12.2019
https://doi.org/10.17798/bitlisfen.537840

Öz

Katmanlı
imalat teknolojisine olan ilgi son yıllarda artış göstermektedir. Katmanlı
imalat tekniği, geleneksel imalat yöntemlerinin aksine malzeme eksiltme değil
de, malzeme eklenmesi prensibine dayanmaktadır. Yüksek tasarım serbestliği,
artık malzeme oluşmaması, kullanıcıya özel ürünlerin imal edilebilmesi,
tasarımdan imalata geçiş süresinin düşük olması, hücresel yapılar ve optimum
tasarımlar ile daha hafif ürün elde edilebilmesi katmanlı imalat tekniğinin
avantajlarındandır. Bunun yanında katmanlı imalat tekniğinin bir takım
dezavantajları da bulunmaktadır. Bunlardan bir tanesi katmanlı imalat ile
üretilen ürünlerin boyutlarının sınırlı olmasıdır. Araştırmacılar bu problemi ortadan
kaldırmak amacıyla katmanlı imalat tekniği ile üretilen metalik malzemeleri
kaynak yöntemiyle birleştirerek çalışmalar yapmaktadır. Bu çalışmada lazer
ergitme-sinterleme ve elektron ışını ergitme yöntemleri kullanılarak üretilen
malzemelerin kaynak kabiliyetinin araştırıldığı çalışmalar derlenmiştir.

Kaynakça

  • 1. Aktimur B., Gökpınar E. S. 2015. Katmanlı Üretimin Havacılıkdaki Uygulamaları, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, 3 (2): 463-469.2. Ayan Y., Kahraman N. 2018. Metal Eklemeli İmalat: Tel Ark Yöntemi ve Uygulamaları, International Journal of 3D Printing Technologies and Digital Industry, 2 (3): 74-84.3. Ding D., Pan Z. S., Cuiuri D., Li H. 2014. A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing, The International Journal of Advanced Manufacturing Technology, 73 (2014): 173-183.4. Turhan S., Özsoy A. 2016. DMLS Yöntemiyle İmal Edilen Ti6Al4V Alaşım Özelliklerine İşlem Parametrelerinin Etkisi, SDU International Journal of Technological Science, 8 (2): 15-27.5. Calignano F., Mandfredi D., Ambrosio E. P., Luliano L., Fino P. 2013. Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS. Int. J Adv Manufacturing Technology, 67 (2013): 2743-2751.6. Ponche R., Kerbrat O., Mognol P., Hascoet J. Y. 2014. A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process, Robotics and Computer-Integrated Manufacturing, 30 (4): 389-398.7. Liberini M., Astarita A., Campatelli G., Scippa A., Montevecchi F., Venturini G., Durante M., Boccarusso L., Memola F., Minutolo C., Squillace A. 2017. Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME '16, pp 470-474, 20- 22 July 2016, Ischia, Italy.8. Fang X., Zhang L., Li H., Li C., Huang K., Lu B. 2018. Microstructure Evolution and Mechanical Behavior of 2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process, Materials, 11 (2018): 812-824.9. Ge J., Lin J., Lei Y., Fu H. 2018. Location-Related Thermal History, Microstructure, and Mechanical Properties of Arc Additively Manufactured 2Cr13 Steel Using Cold Metal Transfer Welding, Materials Science & Engineering A, 715 (2018): 144-153.10. Hopkinson N., Hauge R., Dickens P. 2005. Rapid Manufacturing:An Industrial Revolution for the Digital Age, Edited by Wiley., Loughborough University, UK, 55-81.11. Prashanth K. G., Damodaram R., Scudino S., Wang Z., Rao K. P., Eckert J. 2014. Friction Welding of Al–12Si Parts Produced by Selective Laser Melting, Materials & Design, 57 (2014): 632-637.12. Çelik İ., Karakoç F., Çakır M. C., Duysak A. 2013. Hızlı Prototipleme Teknolojileri Ve Uygulama Alanları, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31 (2013): 53-70.13. Introductıon to Addıtıve Manufacturıng Technology 2015. http://eklemeliimalat.info.tr/ (Erişim Tarihi: 08.03.2019).14. Thijs L., Kempen K., Kruth J. P., Van Humbeeck, J. 2013. Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder, Acta Materialia, 61 (5): 1809-1819.15. Prashanth K. G., Scudino S., Klauss H. J., Surreddi K. B., Löber L., Wang Z., Eckert J. 2014. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment, Materials Science and Engineering: A, 590 (2014): 153-160.16. Scudino S., Unterdörfer C., Prashanth K. G., Attar H., Ellendt N., Uhlenwinkel V., Eckert J. 2015. Additive Manufacturing of Cu–10Sn Bronze, Materials Letters, 156 (2015): 202-204.17. Magalhaes E., Limae Silva A., Limae Silva S. 2017. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems, Applied Sciences, 7 (2): 122-137.18. Du Z., Chen H., Tan M. J., Bi G., Chua C. K. 2018. Investigation of Porosity Reduction, Microstructure and Mechanical Properties for Joining of Selective Laser Melting Fabricated Aluminium Composite via Friction Stir Welding, Journal Of Manufacturıng Processes, 36 (2018): 33-44.19. Scherillo F., Astarita A., Prisco U., Contaldi V., Di Petta P., Langella A., Squillace A. 2018. Friction Stir Welding of AlSi10Mg Plates Produced by Selective Laser Melting, Metallography, Microstructure, and Analysis, 7 (4): 457-463.20. Nahmany M., Stern A., Aghion E., Frage N. 2017. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology, Journal of Materials Engineering and Performance, 26 (10): 4813-4821.21. Nahmany M., Rosenthal I., Benishti I., Frage N., Stern A. 2015. Electron Beam Welding of AlSi10Mg Workpieces Produced by Selected Laser Melting Additive Manufacturing Technology, Additive Manufacturing, 8 (2015): 63-70.22. Kuryntsev S. V. 2018. The Influence of Pre-heat Treatment on Laser Welding of T-joints of Workpieces Made of Selective Laser Melting Steel and Cold Rolled Stainless Steel, Optics & Laser Technology, 107 (2018): 59-66.23. Fieger T. V., Sattler M. F., Witt G. 2018. Developing Laser Beam Welding Parameters for The Assembly of Steel SLM Parts for The Automotive İndustry, Rapid Prototyping Journal, 24 (8): 1288-1295.24. Yavuz H., Çam G. 2005. Lazer–Ark Hibrit Kaynak Yöntemi, Mühendis ve Makine Dergisi, 46 (543): 14-19.25. Casalino G., Campanelli S. L., Ludovico A. D. 2013. Laser-Arc Hybrid Welding of Wrought to Selective Laser Molten Stainless Steel, The International Journal of Advanced Manufacturing Technology, 68 (1-4): 209-216.26. Vora P., Mumtaz K., Todd I., Hopkinson N. 2015. Alsi12 İn-Situ Alloy Formation and Residual Stress Reduction Using Anchorless Selective Laser Melting, Additive Manufacturing, 7 (2015): 12-19.27. Trevisan F., Calignano F., Lorusso M., Pakkanen J., Aversa A., Ambrosio E., Manfredi D. 2017. On The Selective Laser Melting (SLM) of The AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties, Materials, 10 (1): 76-87.28. Liu Y., Yang Y., Wang D. 2016. A Study on The Residual Stress During Selective Laser Melting (SLM) of Metallic Powder, The International Journal of Advanced Manufacturing Technology, 87 (1-4): 647-656.29. Mercelis P., Kruth J. P. 2006. Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyping Journal, 12 (5): 254-265.30. Kouadri-Henni A., Seang C., Malard B., Klosek V. 2017. Residual Stresses Induced by Laser Welding Process in The Case of A Dual-Phase Steel DP600: Simulation and Experimental Approaches, Materials & Design, 123 (2017): 89-102.31. Bajpei T., Chelladurai H., Ansari M. Z. 2017. Experimental Investigation and Numerical Analyses of Residual Stresses and Distortions In GMA Welding of Thin Dissimilar AA5052-AA6061 Plates, Journal of Manufacturing Processes, 25 (2017): 340-350.32. Fu G., Lourenço M. I., Duan M., Estefen S. F. 2016. Influence of The Welding Sequence on Residual Stress and Distortion of Fillet Welded Structures. Marine Structures, 46 (2016): 30-55.33. Prashanth K. G., Damodaram R., Maity T., Wang P., Eckert J. 2017. Friction Welding of Selective Laser Melted Ti6Al4V Parts, Materials Science and Engineering: A, 704 (2017): 66-71.34. Liu C. M., Tian X. J., Tang H. B., Wang H. M. 2013. Microstructural Characterization of Laser Melting Deposited Ti–5Al-5Mo–5V–1Cr–1Fe Near β Titanium Alloy, Journal of Alloys and Compounds, 572 (2013): 17-24.35. Chen X., Zhang J., Chen X., Cheng X., Huang Z. 2018. Electron Beam Welding of Laser Additive Manufacturing Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si Titanium Alloy Thick Plate, Vacuum, 151 (2018): 116-121.36. Hu X., Xue Z., Zhao G., Yun J., Shi D., Yang X. 2019. Laser Welding of A Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Materials Science and Engineering: A, 745 (2019): 335-345.37. Özsoy K., Duman B. 2017. Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği, International Journal of 3d Printing Technologies and Digital Industry, 1 (1): 36-48.38. Yalçın B., Ergene B. 2017. Endüstride Yeni Eğilim Olan 3-D Eklemeli İmalat Yöntemi ve Metalurjisi. Süleyman Demirel Üniversitesi Uluslarası Teknolojik Bilimler Dergisi, 9(3): 65-88.39. Rubino F., Scherillo F., Franchitti S., Squillace A., Astarita A., Carlone P. 2019. Microstructure and Surface Analysis of Friction Stir Processed Ti-6Al-4V Plates Manufactured by Electron Beam Melting, Journal of Manufacturing Processes, 37 (2019): 392-401.40. Sun Y. Y., Wang P., Lu S. L., Li L. Q., Nai M. L. S., Wei J. 2019. Laser Welding of Electron Beam Melted Ti-6Al-4V To Wrought Ti-6Al-4V: Effect of Welding Angle on Microstructure and Mechanical Properties, Journal of Alloys and Compounds, 782 (2019): 967-972.41. Scherillo F., Astarita A., Carrino L., Pirozzi C., Prisco U., Squillace A. 2019. Linear Friction Welding of Ti-6Al-4V Parts Produced by Electron Beam Melting, Materials and Manufacturing Processes, 34 (2): 201-207.42. Sankar G. S., Karthik G. M., Mohammad A., Kumar R., Ram, G. J. 2019. Friction Welding of Electron Beam Melted γ-TiAl Alloy Ti–48Al–2Cr–2Nb, Transactions of the Indian Institute of Metals, 72 (1): 35-46.43. Wang P., Nai M. L. S., Sin W. J., Lu S., Zhang B., Bai J., Wei J. 2018. Realizing A Full Volume Component by In-Situ Welding During Electron Beam Melting Process, Additive Manufacturing, 22 (2018):375-380.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Düzeltme Makalesi
Yazarlar

Kadir Aydın 0000-0001-5701-8058

Mustafa Karamolla Bu kişi benim 0000-0002-0196-9820

Yayımlanma Tarihi 24 Aralık 2019
Gönderilme Tarihi 10 Mart 2019
Kabul Tarihi 11 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 4

Kaynak Göster

IEEE K. Aydın ve M. Karamolla, “Katmanlı İmalat ile Üretilen Metal Malzemelerin Kaynak Kabiliyeti”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 4, ss. 1610–1620, 2019, doi: 10.17798/bitlisfen.537840.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr