Araştırma Makalesi
BibTex RIS Kaynak Göster

Uzaktan Algılama Sistemleri için Elma ve Armut Yapraklarının Dielektrik Parametrelerinin Ölçülmesi ve Modellenmesi

Yıl 2020, Cilt: 9 Sayı: 2, 920 - 930, 15.06.2020
https://doi.org/10.17798/bitlisfen.601064

Öz

Gelişen teknolojilerin bitkilerde gerek uzaktan
izleme/kontrol gerekse uzaktan algılama (UA) sistemlerinde yaygın bir şekilde
kullanılması, bitki kümesinin verim ve kalitenin artmasında önemli rol
oynamaktadır. Bitkilerde dielektrik özelliklerin belirlenmesi, bu alanda
geliştirilecek sistemler için önem arz etmektedir. Bundan dolayı, bazı bitki
türlerinin sıklıkla bulunduğu bölgelerde, elektromanyetik (EM) dalgaların bitki
yüzeylerine nüfuz etme açısından dielektrik parametrelerinin çalışılmasını
gerektirmektedir. Bu çalışmada Isparta bölgesinde çok yoğun olarak üretilmekte
olan elma ve armut ağaçlarının yapraklarına ait dielektrik parametreler Dalga
Kılavuzu İletim Hattı yöntemiyle ölçülmüştür. Ölçümler 3,3-4,9 GHz arasında (WR229
dalga kılavuzu) yapılmış ve nem oranı ve frekansa bağlı elma ve armut
yapraklarının dielektrik karakteristikleri incelenmiştir. Elma yapraklarının
dielektrik ölçüm verileri kullanarak frekans ve nem oranına (NO) bağlı, eğri
uydurma yöntemiyle yeni bir model önerilmiştir. Bu model, elma türüyle aynı
aileden olan armut yaprağının dielektrik ölçüm sonuçlarıyla karşılaştırılarak
önerilen modelin doğruluğu test edilmiştir. Modelin performansını göstermek
için determinasyon katsayısı R2 ve Hataların Ortalama Kare Kökü
(RMSE) değerleri sırasıyla 0,995 ve 0,625 olarak elde edilmiştir.

Kaynakça

  • 1. Faktorová,D. and ISTENÍKOVÁ K. 2011. Modelling of Scattering Parameters in Biological Tissues, Skin, 1(41): 1-7.
  • 2. Nelson S.O. 2006. Agricultural Applications of Dielectric Measurements, IEEE Transactions on Dielectrics and Electrical Insulation, 13(4): 688-702.
  • 3. Nelson S. 1999. Dielectric Properties Measurement Techniques and Applications, Transactions of the ASAE-American Society of Agricultural Engineers, 42(2): 523-530.
  • 4. Chuah H., Kam S. Chye Y. 1997. Microwave Dielectric Properties of Rubber and Oil Palm Leaf Samples: Measurement and Modelling, International Journal of Remote Sensing, 18(12): 2623-2639.
  • 5. Kocakusak A., Colak B., Helhel S. 2016. Frequency Dependent Complex Dielectric Permittivity of Rubber and Magnolia Leaves and Leaf Water Content Relation, Journal of Microwave Power and Electromagnetic Energy, 50(4): 294-307.
  • 6. Romanov A.N., Ulanov P.N. 2018. Seasonal Differences in Dielectric Properties of Dwarf Woody Tundra Vegetation in a Microwave Range, IEEE Transactions on Geoscience and Remote Sensing, 57(6): 3119-3125.
  • 7. Ulaby F.T., El-Rayes M.A. 1987. Microwave Dielectric Spectrum of Vegetation-Part II: Dual-Dispersion Model, IEEE Transactions on Geoscience and Remote Sensing, (5): 550-557.
  • 8. Afzal A., Mousavi S.F. 2008. Estimation of Moisture in Maize Leaf by Measuring Leaf Dielectric Constant, International Journal of Agriculture & Biology, 10:66-68.
  • 9. Colak B. 2019. Moisture Content Effect of Banana Leaves to Radio Frequency Absorbing, Microwave and Optical Technology Letters.
  • 10. Kaur R., Aul G.D., Chawla V. 2015. Improved Reflection Loss Performance of Dried Banana Leaves Pyramidal Microwave Absorbers by Coal for Application in Anechoic Chambers, Progress In Electromagnetics Research, 43:157-164.
  • 11. Jayamani E., Hamdan S., Ezhumalai P., Bakri M.K. 2016. Investigation on Dielectric and Sound Absorption Properties of Banana Fibers Reinforced Epoxy Composites, Jurnal Teknologi, 78:6-10.
  • 12. Khaled D., Novas N., Gazquez J.A., Garcia R.M., Agugliaro F.M. 2015. Fruit and Vegetable Quality Assessment via Dielectric Sensing, Sensors, 15(7): 15363-15397.
  • 13. Navarrete A., Mato R.B., Dimitrakis G.,Lester E., Robinson J.R.,Cocero M.J., Kingman S. 2011. Measurement and Estimation of Aromatic Plant Dielectric Properties, Application to Low Moisture Rosemary, Industrial Crops and Products, 33(3):697-703.
  • 14. Kamaruddin M.J., Yusof M.S.B.M., Ngadi N., Zakaria Z.Y., Arsad A., Kidam K. 2017. Dielectric Properties for Extraction of Orthosiphon Stamineus (Java Tea) Leaves, Chemical Engineering Transactions, 56:1771-1776.
  • 15. Kraszewski A.W., Nelson S.O. 2004. Microwave Permittivity Determination in Agricultural Products, Journal of Microwave Power and Electromagnetic Energy, 39(1): 41-52.
  • 16. Venkatesh M., Raghavan G. 2005. An Overview of Dielectric Properties Measuring Techniques, Canadian Biosystems Engineering, 47(7):15-30.
  • 17. Nelson S.O. 2010. Fundamentals of Dielectric Properties Measurements and Agricultural Applications, Journal of Microwave Power and Electromagnetic Energy, 44(2): 98-113.
  • 18. Van Emmerik T., Steele-Dunne S., Judge J., van de Giesen N. 2015. A comparison Between Leaf Dielectric Properties of Stressed and Unstressed Tomato Plants. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
  • 19. Itolikar A.B., Kurtadikar M.L. 2017. Microwave Measurements of Dielectric Properties of Corn Vegetation at C-Band and Comparison with Debye-Cole Dual Dispersion Model, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(4): 954-965.
  • 20. Krraoui H., Mejri F., Aguili T. 2016. Dielectric Constant Measurement of Materials by a Microwave Technique: Application to the Characterization of Vegetation Leaves, Journal of Electromagnetic Waves and Applications, 30(12):1643-1660.
  • 21. Van Emmerik T.H. 2013. Diurnal Differences in Vegetation Dielectric Constant as a Measure of Water Stress. Delft University of Technology, Civil Engineering. Yüksek Lisans Tezi, 97s, Delft, Hollanda.
  • 22. Durmuş M., Salman A.O., Yıldırım T.Ş. 2018. NRW Metodu İle Malzemelerin Elektromanyetik Parametrelerinin Bulunması, Kocaeli Üniversitesi Fen Bilimleri Dergisi. 1(1):13-19.
  • 23. Yaw K.C. 2012. Measurement of Dielectric Material Properties: Application Note, Rhode & Schwarz.
  • 24. Anonim. 2004. De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Uygulama Notu.
  • 25. Helhel S. Kurnaz O. 2016. Buried Metal Detection within the Wooden Block by X‐Band Measurements, Microwave and Optical Technology Letters, 58(5):1245-1253.
  • 26. Ye L.,Li C., Sun X., Jin S., Chen B., Ye X., Fan J. 2016. Thru-Reflect-Line Calibration Technique: Error Analysis for Characteristic Impedance Variations in the Line Standards. IEEE Transactions on Electromagnetic Compatibility, 59(3):779-788.
  • 27. Chung B.-K. 2007. Dielectric Constant Measurement for Thin Material at Microwave Frequencies, Progress In Electromagnetics Research, 75:239-252.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Genç 0000-0002-7699-2822

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 3 Ağustos 2019
Kabul Tarihi 20 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE A. Genç, “Uzaktan Algılama Sistemleri için Elma ve Armut Yapraklarının Dielektrik Parametrelerinin Ölçülmesi ve Modellenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 9, sy. 2, ss. 920–930, 2020, doi: 10.17798/bitlisfen.601064.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr