Araştırma Makalesi
BibTex RIS Kaynak Göster

Double and Type (3,0) Minkowski Pythagorean Hodograph Curves

Yıl 2022, Cilt: 11 Sayı: 2, 660 - 665, 30.06.2022
https://doi.org/10.17798/bitlisfen.1083043

Öz

In present paper, Double Minkowski Pythagorean Hodograph (DMPH) curves and type (3,0) Minkowski Pythagorean Hodograph (MPH) curves. Firstly, we obtained the conditions for a MPH curve to be a DMPH curve. Then, we examined these conditions in split quaternion form. Finally, a special class of seventh degree MPH curves is characterized and illustrative examples are given.

Kaynakça

  • Choi, H. I., Lee, D. S., Moon, H. P. 2002. Clifford Algebra, Spin Representation and Rational Parameterization of Curves and Surfaces. Advances in Computational Mathematics, 17(1-2), 5-48.
  • Dospra, P. 2015. Quaternion Polynomials and Rational Rotation-Minimizing Frame Curves. Ph.D. Thesis, Agricultural University of Athens, 2015.
  • Farouki, R. T., Sakkalis, T. 1990. Pythagorean Hodographs. IBM Journal of Research and Development, 34(5), 736-752.
  • Farouki, R. T. 1994. The Conformal Map z→z² of the Hodograph Plane. Computer Aided Geometric Design, 11(4), 363-390.
  • Farouki, R. T., Sakkalis, T. 1994. Pythagorean-Hodograph Space Curves. Advances in Computational Mathematics, 2(1), 41-66.
  • Farouki, R. T. 2008. Pythagorean-Hodograph Curves. Springer.
  • Han, C. Y. 2008. Nonexistence of Rational Rotation-Minimizing Frames on Cubic Curves. Computer Aided Geometric Design, 25(4-5), 298-304
  • Inoguchi, J. I. 1998. Timelike Surfaces of Constant Mean Curvature in Minkowski 3-Space, Tokyo Journal of Mathematics, 21(1), 141-152.
  • Ramis, Ç. 2013. PH Curves and Applications. M.S. Thesis, Ankara University.
  • Yazla, A., Sariaydin, M. T. 2019. Applications of the Fermi-Walker derivative. Journal of Science and Arts, 19(3), 545-560.
  • Yazla, A., Sariaydin, M. T. 2020. On Surfaces Constructed by Evolution According to Quasi Frame. Facta Universitatis, Series: Mathematics and Informatics, 605-619.
  • Yazla, A., Sariaydin, M. T. Modeling with Double Minkowski Pythagorean Hodograph Curves. (Submitted)

Double and Type (3,0) Minkowski Pythagorean Hodograph Curves

Yıl 2022, Cilt: 11 Sayı: 2, 660 - 665, 30.06.2022
https://doi.org/10.17798/bitlisfen.1083043

Öz

In present paper, Double Minkowski Pythagorean Hodograph (DMPH) curves and type (3,0) Minkowski Pythagorean Hodograph (MPH) curves are studied. Firstly, the conditions for a MPH curve to be a DMPH curve are obtained. Then, these conditions are
examined in split quaternion form. Finally, a special class of seventh degree MPH curves is characterized and illustrative examples are given.

Kaynakça

  • Choi, H. I., Lee, D. S., Moon, H. P. 2002. Clifford Algebra, Spin Representation and Rational Parameterization of Curves and Surfaces. Advances in Computational Mathematics, 17(1-2), 5-48.
  • Dospra, P. 2015. Quaternion Polynomials and Rational Rotation-Minimizing Frame Curves. Ph.D. Thesis, Agricultural University of Athens, 2015.
  • Farouki, R. T., Sakkalis, T. 1990. Pythagorean Hodographs. IBM Journal of Research and Development, 34(5), 736-752.
  • Farouki, R. T. 1994. The Conformal Map z→z² of the Hodograph Plane. Computer Aided Geometric Design, 11(4), 363-390.
  • Farouki, R. T., Sakkalis, T. 1994. Pythagorean-Hodograph Space Curves. Advances in Computational Mathematics, 2(1), 41-66.
  • Farouki, R. T. 2008. Pythagorean-Hodograph Curves. Springer.
  • Han, C. Y. 2008. Nonexistence of Rational Rotation-Minimizing Frames on Cubic Curves. Computer Aided Geometric Design, 25(4-5), 298-304
  • Inoguchi, J. I. 1998. Timelike Surfaces of Constant Mean Curvature in Minkowski 3-Space, Tokyo Journal of Mathematics, 21(1), 141-152.
  • Ramis, Ç. 2013. PH Curves and Applications. M.S. Thesis, Ankara University.
  • Yazla, A., Sariaydin, M. T. 2019. Applications of the Fermi-Walker derivative. Journal of Science and Arts, 19(3), 545-560.
  • Yazla, A., Sariaydin, M. T. 2020. On Surfaces Constructed by Evolution According to Quasi Frame. Facta Universitatis, Series: Mathematics and Informatics, 605-619.
  • Yazla, A., Sariaydin, M. T. Modeling with Double Minkowski Pythagorean Hodograph Curves. (Submitted)
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Aziz Yazla Bu kişi benim 0000-0003-3720-9716

Muhammed Talat Sarıaydın 0000-0002-3613-4276

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 4 Mart 2022
Kabul Tarihi 27 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 2

Kaynak Göster

IEEE A. Yazla ve M. T. Sarıaydın, “Double and Type (3,0) Minkowski Pythagorean Hodograph Curves”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 2, ss. 660–665, 2022, doi: 10.17798/bitlisfen.1083043.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr