Araştırma Makalesi
BibTex RIS Kaynak Göster

Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain

Yıl 2024, Cilt: 6 Sayı: 2, 198 - 207, 29.10.2024
https://doi.org/10.46387/bjesr.1511306

Öz

The rapid advancements in telecommunications, medicine, military systems, and electronic devices have led to significant public health concerns regarding electromagnetic pollution. This issue is complex due to the potential for electromagnetic interference (EMI) to cause malfunctions or reduced performance in various electronic devices and systems. Electromagnetic shielding materials are essential for reducing pollution and protecting individuals, devices, and systems. Titanium, with its unique attributes, including enhanced electrical conductivity, durability, environmental sustainability, chemical stability, and superior mechanical properties, is an effective defense against electromagnetic pollution. This study utilizes commercially pure titanium grade 4 (CP Ti Grade 4) due to the complex processes involved in obtaining pure titanium. The study investigates the electromagnetic shielding efficacy of titanium in the 5G frequency bands using a Vector Network Analyzer (VNA), waveguides, and coaxial cables, demonstrating an impressive shielding effectiveness (SE) of approximately 70 dB within the 3.3–6 GHz frequency range

Kaynakça

  • “fda.” Accessed: Jan. 28, 2024. [Online]. Available: https://www.fda.gov/radiation-emitting-products/cell-phones/potential-cell-phone-interference-pacemakers-and-other-medical devices#:~:text=In%20the%20unlikely%20event%20that,to%20deliver%20the%20pulses%20irregularly
  • M. Ozturk and D.D.L. Chung, “Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel,” Journal of Building Engineering, vol. 41, p. 102757, 2021.
  • U. Sorgucu, “Enhancing the Electromagnetic Shielding Effectiveness of Alumina (AL2O4) by Coating with Nano Gold (AuNp),” Optical Materials, vol. 148, p. 114795, 2024.
  • J. Wu and D.D.L. Chung, “Combined use of magnetic and electrically conductive fillers in a polymer matrix for electromagnetic interference shielding,” J Electron Mater, vol. 37, pp. 1088–1094, 2008.
  • Y. He, L. Lu, K. Sun, F. Wang, S. Hu, “Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber,” Cem Concr Compos, vol. 92, pp. 1–6, 2018.
  • Z. Wang, T. Zhang, and L. Zhou, “Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar,” Cem Concr Compos, vol. 74, pp. 174–181, 2016.
  • P. Pongmuksuwan, K. Salayong, T. Lertwiriyaprapa, and W. Kitisatorn, “Electromagnetic absorption and mechanical properties of natural rubber composites based on conductive carbon black and Fe3O4,” Materials, vol. 15, no. 19, p. 6532, 2022.
  • T. Blachowicz, A. Hütten, A. Ehrmann, “Electromagnetic interference shielding with electrospun nanofiber mats—a review of production, physical properties and performance,” Fibers, vol. 10, no. 6, p. 47, 2022. D. Wanasinghe F. Aslani, “A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes,” Compos B Eng, vol. 176, p. 107207, 2019.
  • L.C. Martins, C.S. Silva, L.C. Fernandes, Á.M. Sampaio, and A.J. Pontes, “Evaluating the Electromagnetic Shielding of Continuous Carbon Fiber Parts Produced by Additive Manufacturing,” Polymers (Basel), vol. 15, no. 24, p. 4649, 2023.
  • L. Zhong, R. Yu, and X. Hong, “Review of carbon-based electromagnetic shielding materials: film, composite, foam, textile,” Textile Research Journal, vol. 91, no. 9–10, pp. 1167–1183, 2021.
  • S. Jovanović, M. Huskić, D. Kepić, M. Yasir, and K. Haddadi, “A review on graphene and graphene composites for application in electromagnetic shielding,” Graphene and 2D Materials, vol. 8, no. 3, pp. 59–80, 2023.
  • E.G.B. Dassan, A.A. Ab Rahman, M.S.Z. Abidin, and H. M. Akil, “Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review,” Nanotechnol Rev, vol. 9, no. 1, pp. 768–788, 2020.
  • S. Sankaran, K. Deshmukh, M.B. Ahamed, and S.K.K. Pasha, “Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review,” Compos Part A Appl Sci Manuf, vol. 114, pp. 49–71, 2018.
  • J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, “Design and advanced manufacturing of electromagnetic interference shielding materials,” Materials Today, vol. 66, pp. 245-272, 2023.
  • D.D.L. Chung, M. Ozturk, “Electromagnetic skin depth of cement paste and its thickness dependence,” Journal of Building Engineering, vol. 52, p. 104393, 2022.
  • A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal, “Effect of porosity and particle size on microwave heating of copper,” Science of Sintering, vol. 42, no. 2, pp. 169–182, 2010.
  • J. Hlinka, K. Dostalova, K. Cabanova, R. Madeja, K. Frydrysek, J. Koutecky, Z. Rybkova, K. Malachova O. Umezawa, “Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants,” Materials, vol. 16, no. 2, p. 632, 2023.
  • F. Haile, J. Adkins, and M. Corradi, “A Review of the Use of Titanium for Reinforcement of Masonry Structures,” Materials, vol. 15, no. 13, p. 4561, 2022.
  • F.N. Depboylu, E. Yasa, Ö. Poyraz, J. Minguella-Canela, F. Korkusuz, M. A. los Santos López, “Titanium based bone implants production using laser powder bed fusion technology,” journal of materials research and technology, vol. 17, pp. 1408–1426, 2022.
  • W. Lu and H. Guo, “MXenes as a promising material for electromagnetic interference shielding,” in MXenes: Emerging 2D Materials, pp. 183-210, Singapore: Springer Nature Singapore, 2024.
  • Z. Zhao, B. Shi, T. Wang, R. Wang, Q. Chang, J. Yun, ... and H. Wu, “Microscopic and macroscopic structural strategies for enhancing microwave absorption in MXene-based composites,” Carbon, p. 118450, 2023.
  • N. Maruthi, M. Faisal, and N. Raghavendra, “Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects,” Synthetic Metals, vol. 272, p. 116664, 2021.
  • X.-Y. Wang, et al., “Electromagnetic interference shielding materials: recent progress, structure design, and future perspective,” Journal of Materials Chemistry C, vol. 10, no. 1, pp. 44-72, 2022.
  • L.-C. Zhang, L.-Y. Chen, and L. Wang, “Surface modification of titanium and titanium alloys: technologies, developments, and future interests,” Advanced Engineering Materials, vol. 22, no. 5, p. 1901258, 2020.
  • S.H. Ryu, et al., “Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite,” Chemical Engineering Journal, vol. 428, p. 131167, 2022.
  • Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang, “Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study,” Chemical Engineering Journal, vol. 454, p. 140162, 2023.
  • U. Sorgucu, “Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ),” Journal of Materials Science: Materials in Electronics, vol. 34, no. 36, p. 2325, 2023.
  • W. Zhao et al., “Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding,” Chemical Engineering Journal, vol. 437, p. 135266, 2022.
  • H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S. Lee, B. Park, “Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites,” Nanomicro Lett, vol. 15, no. 1, p. 76, 2023.
  • Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen, Y. Huang, Y. Chen, “Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials,” Carbon, vol. 205, pp. 112–137, 2023.
  • J. Kruželák, A. Kvasničáková, K. Hložeková, R. Plavec, R. Dosoudil, M Gořalík, J. Vilčáková I. Hudec, “Mechanical, thermal, electrical characteristics and EMI absorption shielding effectiveness of rubber composites based on ferrite and carbon Fillers,” Polymers (Basel), vol. 13, no. 17, p. 2937, 2021.
  • M. Aghvami-Panah and A. Ameli, “MXene/Cellulose composites as electromagnetic interference shields: Relationships between microstructural design and shielding performance,” Compos Part A Appl Sci Manuf, p. 107879, 2023.
  • J.-M. Jang, H.-S. Lee, J.K. Singh, “Electromagnetic shielding performance of different metallic coatings deposited by arc thermal spray process,” Materials, vol. 13, no. 24, p. 5776, 2020.
  • J. Chang, H. Zhai, Z. Hu, J. Li, “Ultra-thin metal composites for electromagnetic interference shielding,” Compos B Eng, p. 110269, 2022.
  • K. Karacif and B. İnem, “Düşük Karbonlu Bir Çeliğin Kaynağnda Termomekanik Işlemin Mikroyapı ve Mekanik Özelliklere Etkisi,” Gazi Üniversitesi Mühendislik Mimarlk Fakültesi Dergisi, vol. 16, no. 1, pp. 1–8, 2001.
  • J.W. Nicholson, “Titanium alloys for dental implants: A review,” Prosthesis, vol. 2, no. 2, p. 11, 2020.
  • “CP Ti Grade 4.” Accessed: Feb. 01, 2024. [Online]. Available: https://www.carpentertechnology.com/hubfs/7407324/Material%20Saftey%20Data%20Sheets/Ti%20CP%20Grade%204.pdf
  • “ASTM.” Accessed: Jan. 29, 2024. [Online]. Available: https://www.govinfo.gov/content/pkg/GOVPUB-C13-1f770f754c83c95bcd5d338e84d0cb76/pdf/GOVPUB-C13-1f770f754c83c95bcd5d338e84d0cb76.pdf
  • L. Issman, M. Alper, S. Howard, C. Karch, S. Yeshurun, M. Pick, A. Boies, “Direct-spun CNT textiles for high-performance electromagnetic interference shielding in an ultra-wide bandwidth,” Carbon N Y, vol. 206, pp. 166–180, 2023.
  • R. Valente, C. De Ruijter, D. Vlasveld, S. Van Der Zwaag, and P. Groen, “Setup for EMI shielding effectiveness tests of electrically conductive polymer composites at frequencies up to 3.0 GHz,” IEEE Access, vol. 5, pp. 16665–16675, 2017. “TEM Cell.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.govinfo.gov/content/pkg/GOVPUB-C13-eb262f8045246365ac6fc23d5e56840f/pdf/GOVPUB-C13-eb262f8045246365ac6fc23d5e56840f.pdf
  • “Faraday Cage.” Accessed: Jan. 30, 2024. [Online]. Available: https://techetch.com/blog/understanding-different-emi-shielding-effectiveness-tests/
  • González, Marta, Javier Pozuelo, and Juan Baselga. "Electromagnetic shielding materials in GHz range." The Chemical Record 18.7-8, pp.1000-1009, 2018.
  • H. Xie, Y. Zhou, Z. Ren, X. Wei, S. Tao, and C. Yang, “Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material,” J Magn Magn Mater, vol. 499, p. 166244, 2020.
  • A. Behera and A. Behera, “Ti-based nanoalloy in automobile industry,” in Nanotechnology in the Automotive Industry, Elsevier, 2022, pp. 255–268.
  • X. Liu, J. Wu, J. He, L. Zhang, “Electromagnetic interference shielding effectiveness of titanium carbide sheets,” Material Letters, vol. 205, pp. 261–263, 2017.
  • M. Vural, A Pena‐Francesch, J Bars‐Pomes, H. Jung, H Gudapati, C.B. Hatter, B.D. Allen, B. Anasori, I.T. Ozbolat, Y. Gogotsi, “Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding,” Advanced Functional Materials, vol. 28, no. 32, p. 1801972, 2018.
  • R. Rahmati, M. Salari, M. Ashouri-Sanjani, A. Salehi, M. Hamidinejad, C.B. Park, “Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films,” Small, p. 2308320, 2023.
  • M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng “Ti3C2 MXenes with modified sur-face for high-performance electromagnetic absorp-tion and shielding in the X-band,” ACS Appl Mater Interfaces, vol. 8, no. 32, pp. 21011–21019, 2016.
  • P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, “EMI shielding and thermal conductivity of a high porosity reticular titanium foam,” Mater Des, vol. 92, pp. 823–828, 2016.
  • R. Kumar, et al., “Cutting edge composite materials based on MXenes: Synthesis and electromagnetic interference shielding applications,” Composites Part B: Engineering, p. 110874, 2023.
  • R. Verma, et al., “Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications,” Emergent Materials, vol. 7, no. 1, pp. 35-62, 2024.
  • M. Danish, M. Iftikhar, and F. Shahzad, “MXene-based aerogels for electromagnetic interference shielding,” in Porous Nanocomposites for Electromagnetic Interference Shielding, Woodhead Publishing, pp. 427-456, 2024.
  • Z. Guo, et al., “Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding,” Composites Part B: Engineering, vol. 236, p. 109836, 2022.
  • G. Verma and K. P. Ray, “Design, fabrication and characteristics of eco-friendly microwave absorbing materials: A review,” IETE Technical Review, vol. 39, no. 4, pp. 756-774, 2022.
  • F. Jia, Z. Lu, S. Li, J. Zhang, Y. Liu, H. Wang, X. Xu, A. Du, D. Guo, N. Yan, “Asymmetric c-MWCNT/AgNWs/PANFs hybrid film constructed by tailoring conductive-blocks strategy for efficient EMI shielding,” Carbon, vol. 217, p. 118600, 2024.
  • Y. Hu, D. Ni, B. Chen, F. Cai, X. Zou, F. Zhang, Y. Ding, X. Zhang, S. Dong, “Cf/(CrZrHfNbTa) C–SiC high-entropy ceramic matrix composites for potential multi-functional applications,” J Mater Sci Technol, vol. 182, pp. 132–140, 2024.
  • S. Luo, Q. Li, Y. Xue, B. Zhou, Y. Feng, and C. Liu, “Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response,” J Colloid Interface Sci, vol. 652, pp. 1645–1652, 2023.
  • M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi, H. He, X. Wang, “Cellulose nanofiber/MXene/FeCo compos-ites with gradient structure for highly absorbed electromagnetic interference shielding,” Chemical Engineering Journal, vol. 452, p. 139471, 2023.
  • Q. Cao, W. Jiang, H. Qian, Y. Huang, B. Jiang, “A distinct structure of TiC for electromagnetic interference shielding and thermal stability of SiTiOC ceramic nanocomposites,” Ceramic International, vol. 49, no. 16, pp. 27352-27361 2023.
  • Y. Liu, A. Thakur, B. Anasori, S. Mohammadi, “Ka-band EMI Shielding Effectiveness of Ti 3 C 2 T x MXene,” in 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, pp. 760–762, 2023.

5G Frekans Bölgesi için Ticari Titanyumun Elektromanyetik Ekranlama Potansiyeli

Yıl 2024, Cilt: 6 Sayı: 2, 198 - 207, 29.10.2024
https://doi.org/10.46387/bjesr.1511306

Öz

Telekomünikasyon, tıp, askeri sistemler ve elektronik cihazlardaki hızlı ilerlemeler, elektromanyetik kirlilik konusunda önemli bir halk sağlığı endişesine yol açmıştır. Bu sorun, elektromanyetik girişimin (EMI) çeşitli elektronik cihaz ve sistemlerde arızalara veya performans düşüşlerine neden olma potansiyeli nedeniyle karmaşıktır. Elektromanyetik koruyucu malzemeler, kirliliği azaltmak ve bireyleri, cihazları ve sistemleri korumak için gereklidir. Titanyum, gelişmiş elektrik iletkenliği, dayanıklılık, çevresel sürdürülebilirlik, kimyasal kararlılık ve üstün mekanik özellikler gibi benzersiz nitelikleri ile elektromanyetik kirliliğe karşı etkili bir savunmadır. Bu çalışma, saf titanyum elde etme sürecinin karmaşıklığı nedeniyle ticari olarak saf titanyum grade 4 (CP Ti Grade 4) kullanmaktadır. Çalışma, titanyumun 5G frekans bantlarındaki elektromanyetik koruma etkinliğini bir Vektör Ağ Analizörü (VNA), dalga kılavuzları ve koaksiyel kablolar kullanarak araştırmakta ve 3,3–6 GHz frekans aralığında yaklaşık 70 dB'lik etkileyici bir koruma etkinliği (SE) göstermektedir.

Kaynakça

  • “fda.” Accessed: Jan. 28, 2024. [Online]. Available: https://www.fda.gov/radiation-emitting-products/cell-phones/potential-cell-phone-interference-pacemakers-and-other-medical devices#:~:text=In%20the%20unlikely%20event%20that,to%20deliver%20the%20pulses%20irregularly
  • M. Ozturk and D.D.L. Chung, “Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel,” Journal of Building Engineering, vol. 41, p. 102757, 2021.
  • U. Sorgucu, “Enhancing the Electromagnetic Shielding Effectiveness of Alumina (AL2O4) by Coating with Nano Gold (AuNp),” Optical Materials, vol. 148, p. 114795, 2024.
  • J. Wu and D.D.L. Chung, “Combined use of magnetic and electrically conductive fillers in a polymer matrix for electromagnetic interference shielding,” J Electron Mater, vol. 37, pp. 1088–1094, 2008.
  • Y. He, L. Lu, K. Sun, F. Wang, S. Hu, “Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber,” Cem Concr Compos, vol. 92, pp. 1–6, 2018.
  • Z. Wang, T. Zhang, and L. Zhou, “Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar,” Cem Concr Compos, vol. 74, pp. 174–181, 2016.
  • P. Pongmuksuwan, K. Salayong, T. Lertwiriyaprapa, and W. Kitisatorn, “Electromagnetic absorption and mechanical properties of natural rubber composites based on conductive carbon black and Fe3O4,” Materials, vol. 15, no. 19, p. 6532, 2022.
  • T. Blachowicz, A. Hütten, A. Ehrmann, “Electromagnetic interference shielding with electrospun nanofiber mats—a review of production, physical properties and performance,” Fibers, vol. 10, no. 6, p. 47, 2022. D. Wanasinghe F. Aslani, “A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes,” Compos B Eng, vol. 176, p. 107207, 2019.
  • L.C. Martins, C.S. Silva, L.C. Fernandes, Á.M. Sampaio, and A.J. Pontes, “Evaluating the Electromagnetic Shielding of Continuous Carbon Fiber Parts Produced by Additive Manufacturing,” Polymers (Basel), vol. 15, no. 24, p. 4649, 2023.
  • L. Zhong, R. Yu, and X. Hong, “Review of carbon-based electromagnetic shielding materials: film, composite, foam, textile,” Textile Research Journal, vol. 91, no. 9–10, pp. 1167–1183, 2021.
  • S. Jovanović, M. Huskić, D. Kepić, M. Yasir, and K. Haddadi, “A review on graphene and graphene composites for application in electromagnetic shielding,” Graphene and 2D Materials, vol. 8, no. 3, pp. 59–80, 2023.
  • E.G.B. Dassan, A.A. Ab Rahman, M.S.Z. Abidin, and H. M. Akil, “Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review,” Nanotechnol Rev, vol. 9, no. 1, pp. 768–788, 2020.
  • S. Sankaran, K. Deshmukh, M.B. Ahamed, and S.K.K. Pasha, “Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review,” Compos Part A Appl Sci Manuf, vol. 114, pp. 49–71, 2018.
  • J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, “Design and advanced manufacturing of electromagnetic interference shielding materials,” Materials Today, vol. 66, pp. 245-272, 2023.
  • D.D.L. Chung, M. Ozturk, “Electromagnetic skin depth of cement paste and its thickness dependence,” Journal of Building Engineering, vol. 52, p. 104393, 2022.
  • A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal, “Effect of porosity and particle size on microwave heating of copper,” Science of Sintering, vol. 42, no. 2, pp. 169–182, 2010.
  • J. Hlinka, K. Dostalova, K. Cabanova, R. Madeja, K. Frydrysek, J. Koutecky, Z. Rybkova, K. Malachova O. Umezawa, “Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants,” Materials, vol. 16, no. 2, p. 632, 2023.
  • F. Haile, J. Adkins, and M. Corradi, “A Review of the Use of Titanium for Reinforcement of Masonry Structures,” Materials, vol. 15, no. 13, p. 4561, 2022.
  • F.N. Depboylu, E. Yasa, Ö. Poyraz, J. Minguella-Canela, F. Korkusuz, M. A. los Santos López, “Titanium based bone implants production using laser powder bed fusion technology,” journal of materials research and technology, vol. 17, pp. 1408–1426, 2022.
  • W. Lu and H. Guo, “MXenes as a promising material for electromagnetic interference shielding,” in MXenes: Emerging 2D Materials, pp. 183-210, Singapore: Springer Nature Singapore, 2024.
  • Z. Zhao, B. Shi, T. Wang, R. Wang, Q. Chang, J. Yun, ... and H. Wu, “Microscopic and macroscopic structural strategies for enhancing microwave absorption in MXene-based composites,” Carbon, p. 118450, 2023.
  • N. Maruthi, M. Faisal, and N. Raghavendra, “Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects,” Synthetic Metals, vol. 272, p. 116664, 2021.
  • X.-Y. Wang, et al., “Electromagnetic interference shielding materials: recent progress, structure design, and future perspective,” Journal of Materials Chemistry C, vol. 10, no. 1, pp. 44-72, 2022.
  • L.-C. Zhang, L.-Y. Chen, and L. Wang, “Surface modification of titanium and titanium alloys: technologies, developments, and future interests,” Advanced Engineering Materials, vol. 22, no. 5, p. 1901258, 2020.
  • S.H. Ryu, et al., “Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite,” Chemical Engineering Journal, vol. 428, p. 131167, 2022.
  • Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang, “Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study,” Chemical Engineering Journal, vol. 454, p. 140162, 2023.
  • U. Sorgucu, “Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ),” Journal of Materials Science: Materials in Electronics, vol. 34, no. 36, p. 2325, 2023.
  • W. Zhao et al., “Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding,” Chemical Engineering Journal, vol. 437, p. 135266, 2022.
  • H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S. Lee, B. Park, “Absorption-Dominant mmWave EMI Shielding Films with Ultralow Reflection using Ferromagnetic Resonance Frequency Tunable M-Type Ferrites,” Nanomicro Lett, vol. 15, no. 1, p. 76, 2023.
  • Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen, Y. Huang, Y. Chen, “Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials,” Carbon, vol. 205, pp. 112–137, 2023.
  • J. Kruželák, A. Kvasničáková, K. Hložeková, R. Plavec, R. Dosoudil, M Gořalík, J. Vilčáková I. Hudec, “Mechanical, thermal, electrical characteristics and EMI absorption shielding effectiveness of rubber composites based on ferrite and carbon Fillers,” Polymers (Basel), vol. 13, no. 17, p. 2937, 2021.
  • M. Aghvami-Panah and A. Ameli, “MXene/Cellulose composites as electromagnetic interference shields: Relationships between microstructural design and shielding performance,” Compos Part A Appl Sci Manuf, p. 107879, 2023.
  • J.-M. Jang, H.-S. Lee, J.K. Singh, “Electromagnetic shielding performance of different metallic coatings deposited by arc thermal spray process,” Materials, vol. 13, no. 24, p. 5776, 2020.
  • J. Chang, H. Zhai, Z. Hu, J. Li, “Ultra-thin metal composites for electromagnetic interference shielding,” Compos B Eng, p. 110269, 2022.
  • K. Karacif and B. İnem, “Düşük Karbonlu Bir Çeliğin Kaynağnda Termomekanik Işlemin Mikroyapı ve Mekanik Özelliklere Etkisi,” Gazi Üniversitesi Mühendislik Mimarlk Fakültesi Dergisi, vol. 16, no. 1, pp. 1–8, 2001.
  • J.W. Nicholson, “Titanium alloys for dental implants: A review,” Prosthesis, vol. 2, no. 2, p. 11, 2020.
  • “CP Ti Grade 4.” Accessed: Feb. 01, 2024. [Online]. Available: https://www.carpentertechnology.com/hubfs/7407324/Material%20Saftey%20Data%20Sheets/Ti%20CP%20Grade%204.pdf
  • “ASTM.” Accessed: Jan. 29, 2024. [Online]. Available: https://www.govinfo.gov/content/pkg/GOVPUB-C13-1f770f754c83c95bcd5d338e84d0cb76/pdf/GOVPUB-C13-1f770f754c83c95bcd5d338e84d0cb76.pdf
  • L. Issman, M. Alper, S. Howard, C. Karch, S. Yeshurun, M. Pick, A. Boies, “Direct-spun CNT textiles for high-performance electromagnetic interference shielding in an ultra-wide bandwidth,” Carbon N Y, vol. 206, pp. 166–180, 2023.
  • R. Valente, C. De Ruijter, D. Vlasveld, S. Van Der Zwaag, and P. Groen, “Setup for EMI shielding effectiveness tests of electrically conductive polymer composites at frequencies up to 3.0 GHz,” IEEE Access, vol. 5, pp. 16665–16675, 2017. “TEM Cell.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.govinfo.gov/content/pkg/GOVPUB-C13-eb262f8045246365ac6fc23d5e56840f/pdf/GOVPUB-C13-eb262f8045246365ac6fc23d5e56840f.pdf
  • “Faraday Cage.” Accessed: Jan. 30, 2024. [Online]. Available: https://techetch.com/blog/understanding-different-emi-shielding-effectiveness-tests/
  • González, Marta, Javier Pozuelo, and Juan Baselga. "Electromagnetic shielding materials in GHz range." The Chemical Record 18.7-8, pp.1000-1009, 2018.
  • H. Xie, Y. Zhou, Z. Ren, X. Wei, S. Tao, and C. Yang, “Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material,” J Magn Magn Mater, vol. 499, p. 166244, 2020.
  • A. Behera and A. Behera, “Ti-based nanoalloy in automobile industry,” in Nanotechnology in the Automotive Industry, Elsevier, 2022, pp. 255–268.
  • X. Liu, J. Wu, J. He, L. Zhang, “Electromagnetic interference shielding effectiveness of titanium carbide sheets,” Material Letters, vol. 205, pp. 261–263, 2017.
  • M. Vural, A Pena‐Francesch, J Bars‐Pomes, H. Jung, H Gudapati, C.B. Hatter, B.D. Allen, B. Anasori, I.T. Ozbolat, Y. Gogotsi, “Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding,” Advanced Functional Materials, vol. 28, no. 32, p. 1801972, 2018.
  • R. Rahmati, M. Salari, M. Ashouri-Sanjani, A. Salehi, M. Hamidinejad, C.B. Park, “Comparative Effects of Hydrazine and Thermal Reduction Methods on Electromagnetic Interference Shielding Characteristics in Foamed Titanium Carbonitride MXene Films,” Small, p. 2308320, 2023.
  • M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng “Ti3C2 MXenes with modified sur-face for high-performance electromagnetic absorp-tion and shielding in the X-band,” ACS Appl Mater Interfaces, vol. 8, no. 32, pp. 21011–21019, 2016.
  • P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, “EMI shielding and thermal conductivity of a high porosity reticular titanium foam,” Mater Des, vol. 92, pp. 823–828, 2016.
  • R. Kumar, et al., “Cutting edge composite materials based on MXenes: Synthesis and electromagnetic interference shielding applications,” Composites Part B: Engineering, p. 110874, 2023.
  • R. Verma, et al., “Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications,” Emergent Materials, vol. 7, no. 1, pp. 35-62, 2024.
  • M. Danish, M. Iftikhar, and F. Shahzad, “MXene-based aerogels for electromagnetic interference shielding,” in Porous Nanocomposites for Electromagnetic Interference Shielding, Woodhead Publishing, pp. 427-456, 2024.
  • Z. Guo, et al., “Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding,” Composites Part B: Engineering, vol. 236, p. 109836, 2022.
  • G. Verma and K. P. Ray, “Design, fabrication and characteristics of eco-friendly microwave absorbing materials: A review,” IETE Technical Review, vol. 39, no. 4, pp. 756-774, 2022.
  • F. Jia, Z. Lu, S. Li, J. Zhang, Y. Liu, H. Wang, X. Xu, A. Du, D. Guo, N. Yan, “Asymmetric c-MWCNT/AgNWs/PANFs hybrid film constructed by tailoring conductive-blocks strategy for efficient EMI shielding,” Carbon, vol. 217, p. 118600, 2024.
  • Y. Hu, D. Ni, B. Chen, F. Cai, X. Zou, F. Zhang, Y. Ding, X. Zhang, S. Dong, “Cf/(CrZrHfNbTa) C–SiC high-entropy ceramic matrix composites for potential multi-functional applications,” J Mater Sci Technol, vol. 182, pp. 132–140, 2024.
  • S. Luo, Q. Li, Y. Xue, B. Zhou, Y. Feng, and C. Liu, “Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response,” J Colloid Interface Sci, vol. 652, pp. 1645–1652, 2023.
  • M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi, H. He, X. Wang, “Cellulose nanofiber/MXene/FeCo compos-ites with gradient structure for highly absorbed electromagnetic interference shielding,” Chemical Engineering Journal, vol. 452, p. 139471, 2023.
  • Q. Cao, W. Jiang, H. Qian, Y. Huang, B. Jiang, “A distinct structure of TiC for electromagnetic interference shielding and thermal stability of SiTiOC ceramic nanocomposites,” Ceramic International, vol. 49, no. 16, pp. 27352-27361 2023.
  • Y. Liu, A. Thakur, B. Anasori, S. Mohammadi, “Ka-band EMI Shielding Effectiveness of Ti 3 C 2 T x MXene,” in 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, pp. 760–762, 2023.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Uğur Sorgucu 0000-0001-9227-1526

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 29 Ekim 2024
Gönderilme Tarihi 5 Temmuz 2024
Kabul Tarihi 14 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Sorgucu, U. (2024). Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(2), 198-207. https://doi.org/10.46387/bjesr.1511306
AMA Sorgucu U. Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain. Müh.Bil.ve Araş.Dergisi. Ekim 2024;6(2):198-207. doi:10.46387/bjesr.1511306
Chicago Sorgucu, Uğur. “Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 6, sy. 2 (Ekim 2024): 198-207. https://doi.org/10.46387/bjesr.1511306.
EndNote Sorgucu U (01 Ekim 2024) Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain. Mühendislik Bilimleri ve Araştırmaları Dergisi 6 2 198–207.
IEEE U. Sorgucu, “Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain”, Müh.Bil.ve Araş.Dergisi, c. 6, sy. 2, ss. 198–207, 2024, doi: 10.46387/bjesr.1511306.
ISNAD Sorgucu, Uğur. “Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain”. Mühendislik Bilimleri ve Araştırmaları Dergisi 6/2 (Ekim 2024), 198-207. https://doi.org/10.46387/bjesr.1511306.
JAMA Sorgucu U. Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain. Müh.Bil.ve Araş.Dergisi. 2024;6:198–207.
MLA Sorgucu, Uğur. “Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 6, sy. 2, 2024, ss. 198-07, doi:10.46387/bjesr.1511306.
Vancouver Sorgucu U. Potential of Commercial Titanium in Electromagnetic Shielding for 5G Frequency Domain. Müh.Bil.ve Araş.Dergisi. 2024;6(2):198-207.