Research Article
BibTex RIS Cite

Effect of Biochars Produced at Different Pyrolysis Temperatures on Ammonium (NH4+) and Nitrate (NO3-) Leaching: Column Experiment

Year 2024, Volume: 7 Issue: 4, 346 - 352, 15.07.2024
https://doi.org/10.47115/bsagriculture.1483357

Abstract

Nitrogen (N) leaching from agricultural soils is a global problem with negative effects on both human health and the environment. Efforts should be made to increase the efficiency of use of plant nutrients and minimize N losses from terrestrial ecosystems to aquatic ecosystems. In this study, the effects of different doses (%0, %1 and %2) of biochar obtained from corn cob and rice husk biomass, which are agricultural production residues, at three different temperatures, on ammonium (NH4+) and nitrate (NO3-) leaching in a coarse-textured soil were investigated. Polyethylene (PE) columns with a diameter of 70 mm and a height of 20 cm were used in the study, which was carried out in three replications according to the randomized plots experimental design. Total nitrogen (27 kg N da-1) and water amounts (969 mm) used for 6 tons da-1 yield of sugar beet were applied. Total water was given to each column in equal volume using drip adjustment sets at one-week intervals, simulating 6 irrigation periods, and the leaked water was collected in each irrigation period and NO3- and NH4+ concentrations were determined. Applications of 1 and 2 doses of corn and rice biochars obtained at three different pyrolysis temperatures caused a significant decrease in NH4+ concentrations leaching from the column. Similarly, biochar applications (especially 2% dose) caused a significant decrease in NO3- concentrations leaching from the column. While the total NO3- concentration leaching from the control columns was 149.23 mg kg-1, 2% dose of rice husk biochars at 300, 400 and 500 ℃ temperature applications caused a decrease in the total NO3- concentrations washed from the column by 51%, 55% and 51%, respectively. The results revealed that biochar applications significantly reduced nitrogen leaching from the soil.

References

  • Abascal E, Gómez-Coma L, Ortiz I, Ortiz A. 2022. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Tot Environ, 810: 152233. https://doi.org/10.1016/j.scitotenv.2021.152233.
  • Alkharabsheh HM, Seleiman MF, Battaglia ML, Shami A, Jalal RS, Alhammad BA, Al-Saif AM. 2021. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5): 993.
  • Banik C, Bakshi S, Laird DA, Smith RG, Brown RC. 2023. Impact of biochar-based slow-release N-fertilizers on maize growth and nitrogen recovery efficiency. J Environ Qual, 52(3): 630-640. https://doi.org/10.1002/jeq2.20468.
  • Bodur S. 2016. Effects of different levels of olive pomace and olive pomace biochar on nitrate leaching from sandy soils. MSc Thesis, Çanakkale Onsekiz Mart University, Institute of Science, Çanakkale, Türkiye, pp: 49.
  • Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Novak J. 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci Tot Environ, 651: 2354-2364. https://doi.org/10.1016/j.scitotenv.2018.10.060.
  • DEZWAS. 1983. Deutsche Einheitsverfahren Zur Wasser- Abwasser-und Schlammuntersuchungen. In Fachgruppe Wasserchemie in der Gesellscheft Deutscher Chemiker (ed.) Chemie. Weinheim/ Bergstrasse, Germany, pp: 43.
  • Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut, 213: 47-55.
  • Elkhlifi Z, Iftikhar J, Sarraf M, Ali B, Saleem MH, Ibranshahib I, Torun Kayabasi E. 2023. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability, 15(3): 2527.
  • Fabig W, Ottow J, Muller F. 1978. Mineralisation von 14C-markiertem Benzoat mit Nitrat als Wasserstoff-Akzeptor unter vollstandig anaeroben Bedingungen bei sowie vermindertem Sauerstoffpartialdruck. Landwirtschaftliche Forschung. Sonderheft, pp: 154.
  • Ferretti G, Galamini G, Medoro V, Faccini B. 2023. Amount and speciation of N leached from a sandy soil fertilized with urea, liquid digestate, struvite and NH4‐enriched chabazite zeolite‐tuff. Soil Use Manag, 39(1): 456-473.
  • Forde B, Zhang H. 1998. Nitrate and root branching. Trends Plant Sci, 3(6): 204-205.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Günal E, Erdem H, Kaplan A. 2017. Biyokömür ilavesinin toprakta nitrat ve amonyum yıkanmasına etkileri. Harran Tarım Gıda Bil Derg, 21(1): 77-83.
  • İlbaş A, Günel E, Yıldırım B, Arslan B. 2016. Farklı azotlu gübre seviyeleri ile şeker pancarının verimi arasındaki ilişkinin incelenmesi, doğal ve ekonomik optimum azot seviyesinin belirlenmesi üzerine bir araştırma. Yuzuncu Yıl Univ J Agri Sci, 6(1): 97-113.
  • Jellali S, El-Bassi L, Charabi Y, Usman M, Khiari B, Al-Wardy M, Jeguirim M. 2022. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. J Environ Manag, 305: 114368.
  • Köhler K, Duynisveld WH, Böttcher J. 2006. Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutrit Soil Sci, 169(2): 185-195.
  • Laird D, Fleming P, Wang B, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4): 436-442.
  • Lv R, Wang Y, Yang X, Wen Y, Tan X, Zeng Y, and Shang Q. 2021. Adsorption and leaching characteristics of ammonium and nitrate from paddy soil as affected by biochar amendment. Plant Soil Environ, 67(1): 8-17.
  • Rashmi I, Shirale A, Kartikha K, Shinogi K, Meena B, Kala S. 2017. Leaching of plant nutrients from agricultural lands. Essential Plant Nutrients: Uptake Use Efficiency Manag, 2017: 465-489.
  • Şenay B, Tepecik M. 2024. Biyokömür uygulamalarının toprağın fiziksel ve kimyasal özellikleri ile buğdayın (Triticum aestivum L.) çimlenme ve biyomas üzerine etkisinin belirlenmesi. Tekirdağ Ziraat Fak Derg, 21(2): 297-308.
  • TAGEM D. 2017. Türkiye’de Sulanan Bitkilerin Bitki Su Tüketimleri. Ankara, Türkiye, pp: 25.
  • Tepecik M, Ekren S, Ongun AR, Sarikahya NB. 2024. Effects of biochar treatments on the elemental composition of tobacco (Nicotiana tabacum L.) leaves based on the priming period. Heliyon, 10(1): E23307. https://doi.org/10.1016/j.heliyon.2023.e23307.
  • Tepecik M, Kayıkçıoğlu HH, Kılıç S. 2022. Farklı piroliz sıcaklıklarında elde edilen biyokömürün mısır bitkisinin bitki besin elementleri üzerine etkisi. Ege Üniv Zir Fak Derg, 59(1): 171-181.
  • Teutscherova N, Houška J, Navas M, Masaguer A, Benito M, Vazquez E. 2018. Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study. Geoderma, 323: 136-145. https://doi.org/10.1016/j.geoderma.2018.03.004.
  • Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio/Technol, 19(1): 191-215. https://doi.org/10.1007/s11157-020-09523-3.
  • Uzoma K, Inoue M, Andry H, Zahoor A, Nishihara E. 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agri Environ, 9(3-4): 1137-1143.
  • Yahaya SM, Mahmud AA, Abdullahi M, Haruna A. 2023. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere, 33(3): 385-406.
  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11): 1467-1471.
Year 2024, Volume: 7 Issue: 4, 346 - 352, 15.07.2024
https://doi.org/10.47115/bsagriculture.1483357

Abstract

References

  • Abascal E, Gómez-Coma L, Ortiz I, Ortiz A. 2022. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Tot Environ, 810: 152233. https://doi.org/10.1016/j.scitotenv.2021.152233.
  • Alkharabsheh HM, Seleiman MF, Battaglia ML, Shami A, Jalal RS, Alhammad BA, Al-Saif AM. 2021. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5): 993.
  • Banik C, Bakshi S, Laird DA, Smith RG, Brown RC. 2023. Impact of biochar-based slow-release N-fertilizers on maize growth and nitrogen recovery efficiency. J Environ Qual, 52(3): 630-640. https://doi.org/10.1002/jeq2.20468.
  • Bodur S. 2016. Effects of different levels of olive pomace and olive pomace biochar on nitrate leaching from sandy soils. MSc Thesis, Çanakkale Onsekiz Mart University, Institute of Science, Çanakkale, Türkiye, pp: 49.
  • Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Novak J. 2019. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci Tot Environ, 651: 2354-2364. https://doi.org/10.1016/j.scitotenv.2018.10.060.
  • DEZWAS. 1983. Deutsche Einheitsverfahren Zur Wasser- Abwasser-und Schlammuntersuchungen. In Fachgruppe Wasserchemie in der Gesellscheft Deutscher Chemiker (ed.) Chemie. Weinheim/ Bergstrasse, Germany, pp: 43.
  • Ding Y, Liu YX, Wu WX, Shi DZ, Yang M, Zhong ZK. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut, 213: 47-55.
  • Elkhlifi Z, Iftikhar J, Sarraf M, Ali B, Saleem MH, Ibranshahib I, Torun Kayabasi E. 2023. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability, 15(3): 2527.
  • Fabig W, Ottow J, Muller F. 1978. Mineralisation von 14C-markiertem Benzoat mit Nitrat als Wasserstoff-Akzeptor unter vollstandig anaeroben Bedingungen bei sowie vermindertem Sauerstoffpartialdruck. Landwirtschaftliche Forschung. Sonderheft, pp: 154.
  • Ferretti G, Galamini G, Medoro V, Faccini B. 2023. Amount and speciation of N leached from a sandy soil fertilized with urea, liquid digestate, struvite and NH4‐enriched chabazite zeolite‐tuff. Soil Use Manag, 39(1): 456-473.
  • Forde B, Zhang H. 1998. Nitrate and root branching. Trends Plant Sci, 3(6): 204-205.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Günal E, Erdem H, Kaplan A. 2017. Biyokömür ilavesinin toprakta nitrat ve amonyum yıkanmasına etkileri. Harran Tarım Gıda Bil Derg, 21(1): 77-83.
  • İlbaş A, Günel E, Yıldırım B, Arslan B. 2016. Farklı azotlu gübre seviyeleri ile şeker pancarının verimi arasındaki ilişkinin incelenmesi, doğal ve ekonomik optimum azot seviyesinin belirlenmesi üzerine bir araştırma. Yuzuncu Yıl Univ J Agri Sci, 6(1): 97-113.
  • Jellali S, El-Bassi L, Charabi Y, Usman M, Khiari B, Al-Wardy M, Jeguirim M. 2022. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. J Environ Manag, 305: 114368.
  • Köhler K, Duynisveld WH, Böttcher J. 2006. Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutrit Soil Sci, 169(2): 185-195.
  • Laird D, Fleming P, Wang B, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4): 436-442.
  • Lv R, Wang Y, Yang X, Wen Y, Tan X, Zeng Y, and Shang Q. 2021. Adsorption and leaching characteristics of ammonium and nitrate from paddy soil as affected by biochar amendment. Plant Soil Environ, 67(1): 8-17.
  • Rashmi I, Shirale A, Kartikha K, Shinogi K, Meena B, Kala S. 2017. Leaching of plant nutrients from agricultural lands. Essential Plant Nutrients: Uptake Use Efficiency Manag, 2017: 465-489.
  • Şenay B, Tepecik M. 2024. Biyokömür uygulamalarının toprağın fiziksel ve kimyasal özellikleri ile buğdayın (Triticum aestivum L.) çimlenme ve biyomas üzerine etkisinin belirlenmesi. Tekirdağ Ziraat Fak Derg, 21(2): 297-308.
  • TAGEM D. 2017. Türkiye’de Sulanan Bitkilerin Bitki Su Tüketimleri. Ankara, Türkiye, pp: 25.
  • Tepecik M, Ekren S, Ongun AR, Sarikahya NB. 2024. Effects of biochar treatments on the elemental composition of tobacco (Nicotiana tabacum L.) leaves based on the priming period. Heliyon, 10(1): E23307. https://doi.org/10.1016/j.heliyon.2023.e23307.
  • Tepecik M, Kayıkçıoğlu HH, Kılıç S. 2022. Farklı piroliz sıcaklıklarında elde edilen biyokömürün mısır bitkisinin bitki besin elementleri üzerine etkisi. Ege Üniv Zir Fak Derg, 59(1): 171-181.
  • Teutscherova N, Houška J, Navas M, Masaguer A, Benito M, Vazquez E. 2018. Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study. Geoderma, 323: 136-145. https://doi.org/10.1016/j.geoderma.2018.03.004.
  • Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio/Technol, 19(1): 191-215. https://doi.org/10.1007/s11157-020-09523-3.
  • Uzoma K, Inoue M, Andry H, Zahoor A, Nishihara E. 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agri Environ, 9(3-4): 1137-1143.
  • Yahaya SM, Mahmud AA, Abdullahi M, Haruna A. 2023. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere, 33(3): 385-406.
  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11): 1467-1471.
There are 28 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Cabir Çağrı Gence 0000-0001-9748-1303

Halil Erdem 0000-0002-3296-1549

Publication Date July 15, 2024
Submission Date May 13, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Gence, C. Ç., & Erdem, H. (2024). Effect of Biochars Produced at Different Pyrolysis Temperatures on Ammonium (NH4+) and Nitrate (NO3-) Leaching: Column Experiment. Black Sea Journal of Agriculture, 7(4), 346-352. https://doi.org/10.47115/bsagriculture.1483357

                                                  24890