Direction Curves of Vectorial Moments with Respect to an Alternative Frame in Euclidean Space
Year 2025,
Volume: 8 Issue: 4, 247 - 260, 08.12.2025
Uğur Oruç
,
Murat Turan
,
Sıddıka Özkaldı Karakuş
Abstract
This study introduces an alternative geometric framework for analyzing curves in three-dimensional Euclidean space. By constructing a set of alternative frame vectors and examining their corresponding derivative relations, a new perspective on the differential geometry of space curves is developed. Utilizing these frame vectors and a specifically defined Darboux vector, the vectorial moment curves associated with the original curve are derived. A key contribution of this work is the identification and characterization of the dual directed curves corresponding to these vectorial moments within the alternative frame structure. This approach offers new insights into the intrinsic properties of space curves and broadens the analytical tools available for applications in theoretical and applied geometry.
References
-
[1] Y. Tuncer, Vectorial moments of curves in Euclidean 3-space, Int. J. Geom. Methods Mod. Phys., 14(2) (2017), Article ID 1750020. https://doi.org/10.1142/s0219887817500207
-
[2] O. Kaya, M. Önder, New partner curves in the Euclidean 3-space $E^{3}$, Int. J. Geom., 6(2) (2017), 41–50.
-
[3] M. Barros, General helices and a theorem of Lancret, Proc. Am. Math. Soc., 125(5) (1997), 1503–1509. https://doi.org/10.1090/s0002-9939-97-03692-7
-
[4] Ü. Çiftçi, A generalization of Lancret's theorem, J. Geom. Phys., 59(12) (2009), 1597–1603. https://doi.org/10.1016/j.geomphys.2009.07.016
-
[5] J. Choi, Y. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218(18) (2012), 9116–9124. https://doi.org/10.1016/j.amc.2012.02.064
-
[6] S. Deshmukh, B. Chen, A. Alghanemi, Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math., 42(5) (2018), 2826–2840. https://doi.org/10.3906/mat-1712-34
-
[7] T. Körpınar, M. Sarıaydın, E. Turhan, Associated curves according to Bishop frame in Euclidean 3-space, Adv. Model. Optim., 15(3) (2013), 713–717.
-
[8] S. K. Nurkan, İ. A. Güven, M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 89(1) (2019), 155–161. https://doi.org/10.1007/s40010-017-0425-y
-
[9] S. Yılmaz, Characterizations of some associated and special curves to type-2 Bishop frame in $E^{3}$, Kırklareli Univ. J. Eng. Sci., 1 (2015), 66–77.
-
[10] S. Şenyurt, H. Şardağ, O. Çakır, On vectorial moment of the Darboux vector, Konuralp J. Math., 8(1) (2020), 144–151.
-
[11] S. Kaya, İ. A. Güven, Construction of vectorial moments via direction curves, AIMS Math., 8 (2023), 12857–12871. https://doi.org/10.3934/math.2023648
-
[12] N. Karagöz, Yönlü vektörel moment eğrileri, Master’s Thesis, Gaziantep University, 2024.
-
[13] D. Struik, Lectures on Classical Differential Geometry, Dover Publications, New York, 1988.
-
[14] R. Millman, G. Parker, Elements of Differential Geometry, Pearson, London, 1977.
-
[15] A. Sabuncuoğlu, Diferansiyel Geometri, Nobel Yayınları, Ankara, 2014.
-
[16] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, Boca Raton, FL, 1997.
-
[17] S. Şenyurt, D-Smarandache curves according to the Sabban frame of the spherical indicatrix curve, Turk. J. Math. Comput. Sci., 9 (2018), 39–49.
-
[18] H. Şardağ, Alternatif çatının vektörel moment eğrileri üzerine, Master’s Thesis, Ordu University, 2019.
Year 2025,
Volume: 8 Issue: 4, 247 - 260, 08.12.2025
Uğur Oruç
,
Murat Turan
,
Sıddıka Özkaldı Karakuş
References
-
[1] Y. Tuncer, Vectorial moments of curves in Euclidean 3-space, Int. J. Geom. Methods Mod. Phys., 14(2) (2017), Article ID 1750020. https://doi.org/10.1142/s0219887817500207
-
[2] O. Kaya, M. Önder, New partner curves in the Euclidean 3-space $E^{3}$, Int. J. Geom., 6(2) (2017), 41–50.
-
[3] M. Barros, General helices and a theorem of Lancret, Proc. Am. Math. Soc., 125(5) (1997), 1503–1509. https://doi.org/10.1090/s0002-9939-97-03692-7
-
[4] Ü. Çiftçi, A generalization of Lancret's theorem, J. Geom. Phys., 59(12) (2009), 1597–1603. https://doi.org/10.1016/j.geomphys.2009.07.016
-
[5] J. Choi, Y. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218(18) (2012), 9116–9124. https://doi.org/10.1016/j.amc.2012.02.064
-
[6] S. Deshmukh, B. Chen, A. Alghanemi, Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math., 42(5) (2018), 2826–2840. https://doi.org/10.3906/mat-1712-34
-
[7] T. Körpınar, M. Sarıaydın, E. Turhan, Associated curves according to Bishop frame in Euclidean 3-space, Adv. Model. Optim., 15(3) (2013), 713–717.
-
[8] S. K. Nurkan, İ. A. Güven, M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 89(1) (2019), 155–161. https://doi.org/10.1007/s40010-017-0425-y
-
[9] S. Yılmaz, Characterizations of some associated and special curves to type-2 Bishop frame in $E^{3}$, Kırklareli Univ. J. Eng. Sci., 1 (2015), 66–77.
-
[10] S. Şenyurt, H. Şardağ, O. Çakır, On vectorial moment of the Darboux vector, Konuralp J. Math., 8(1) (2020), 144–151.
-
[11] S. Kaya, İ. A. Güven, Construction of vectorial moments via direction curves, AIMS Math., 8 (2023), 12857–12871. https://doi.org/10.3934/math.2023648
-
[12] N. Karagöz, Yönlü vektörel moment eğrileri, Master’s Thesis, Gaziantep University, 2024.
-
[13] D. Struik, Lectures on Classical Differential Geometry, Dover Publications, New York, 1988.
-
[14] R. Millman, G. Parker, Elements of Differential Geometry, Pearson, London, 1977.
-
[15] A. Sabuncuoğlu, Diferansiyel Geometri, Nobel Yayınları, Ankara, 2014.
-
[16] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, Boca Raton, FL, 1997.
-
[17] S. Şenyurt, D-Smarandache curves according to the Sabban frame of the spherical indicatrix curve, Turk. J. Math. Comput. Sci., 9 (2018), 39–49.
-
[18] H. Şardağ, Alternatif çatının vektörel moment eğrileri üzerine, Master’s Thesis, Ordu University, 2019.