Research Article
BibTex RIS Cite

Forcing linearity numbers for coatomic modules

Year 2018, , 1 - 4, 30.09.2018
https://doi.org/10.33434/cams.446020

Abstract

We show that an integer $ n\in \mathbb{N}\cup \lbrace 0 \rbrace $ is the forcing linearity number of a coatomic module over an arbitrary commutative ring with identity if and only if $n\in \left\{ 0,1,2,\infty \right\} \cup \left\{ q+2\left\vert q\text{ is a prime power}\right. \right\} .$

References

  • [1] C.Faith, Algebra. II. Ring theory. Grundlehren der Mathematischen Wissenschaften, No. 191. Springer- Verlag, Berlin- New York, 1976.
  • [2] R.M.Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133- 1137.
  • [3] C.J.Maxson, J.H.Meyer, Forcing linearity numbers, J.Algebra 223 (2000), 190- 207.
  • [4] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J.Algebra 256 (2002), 66- 84.
  • [5] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for finitely generated modules, Rocky Mountain J.Math. 35 (3) (2005), 929-939.
  • [6] A.A.Tuganbaev, Rings whose nonzero modules have maximal submodules, J.Math.Sci. (New York) 109 (2002), no.3, 1589- 1640.
  • [7] H. Zöschinger, Koatomare Moduln, Math. Z. 170 (1980), 221- 232.
Year 2018, , 1 - 4, 30.09.2018
https://doi.org/10.33434/cams.446020

Abstract

References

  • [1] C.Faith, Algebra. II. Ring theory. Grundlehren der Mathematischen Wissenschaften, No. 191. Springer- Verlag, Berlin- New York, 1976.
  • [2] R.M.Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133- 1137.
  • [3] C.J.Maxson, J.H.Meyer, Forcing linearity numbers, J.Algebra 223 (2000), 190- 207.
  • [4] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J.Algebra 256 (2002), 66- 84.
  • [5] C.J.Maxson, A.B.Van der Merwe, Forcing linearity numbers for finitely generated modules, Rocky Mountain J.Math. 35 (3) (2005), 929-939.
  • [6] A.A.Tuganbaev, Rings whose nonzero modules have maximal submodules, J.Math.Sci. (New York) 109 (2002), no.3, 1589- 1640.
  • [7] H. Zöschinger, Koatomare Moduln, Math. Z. 170 (1980), 221- 232.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Peter R. Fuchs 0000-0001-9165-3688

Publication Date September 30, 2018
Submission Date July 19, 2018
Acceptance Date September 19, 2018
Published in Issue Year 2018

Cite

APA Fuchs, P. R. (2018). Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences, 1(1), 1-4. https://doi.org/10.33434/cams.446020
AMA Fuchs PR. Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences. September 2018;1(1):1-4. doi:10.33434/cams.446020
Chicago Fuchs, Peter R. “Forcing Linearity Numbers for Coatomic Modules”. Communications in Advanced Mathematical Sciences 1, no. 1 (September 2018): 1-4. https://doi.org/10.33434/cams.446020.
EndNote Fuchs PR (September 1, 2018) Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences 1 1 1–4.
IEEE P. R. Fuchs, “Forcing linearity numbers for coatomic modules”, Communications in Advanced Mathematical Sciences, vol. 1, no. 1, pp. 1–4, 2018, doi: 10.33434/cams.446020.
ISNAD Fuchs, Peter R. “Forcing Linearity Numbers for Coatomic Modules”. Communications in Advanced Mathematical Sciences 1/1 (September 2018), 1-4. https://doi.org/10.33434/cams.446020.
JAMA Fuchs PR. Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences. 2018;1:1–4.
MLA Fuchs, Peter R. “Forcing Linearity Numbers for Coatomic Modules”. Communications in Advanced Mathematical Sciences, vol. 1, no. 1, 2018, pp. 1-4, doi:10.33434/cams.446020.
Vancouver Fuchs PR. Forcing linearity numbers for coatomic modules. Communications in Advanced Mathematical Sciences. 2018;1(1):1-4.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..