Research Article
BibTex RIS Cite

Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators

Year 2019, , 129 - 134, 27.06.2019
https://doi.org/10.33434/cams.508305

Abstract

Let $A$ and $B$ be linear operators on a Hilbert space. Let $A$ and $A+B$ generate $C_0$-semigroups $e^{tA}$ and $e^{t(A+B)}$, respectively, and $e^{tA}$ be exponentially stable. We establish exponential stability conditions for $e^{t(A+B)}$ in terms of the commutator $AB-BA$, assuming that it has a bounded extension. Besides, $B$ can be unbounded.

References

  • [1] R. Curtain, H. Zwart, Introduction to Infinite-Dimensional Systems Theory, Springer, New York, 1995.
  • [2] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, Vol. 209, Birkhauser Verlag, Basel, 2010.
  • [3] A. Batkai, K.-J. Engel, J. Pruus, R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (13-14) (2006), 1425-1440.
  • [4] C.J.K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
  • [5] C. Buse, A. Khan, G. Rahmat, O. Saierli, Weak real integral characterizations for exponential stability of semigroups in reflexive spaces, Semigr. Forum, 88 (2014), 195-204.
  • [6] C. Buse, C. Niculescu, A condition of uniform exponential stability for semigroups, Math. Inequal. Appl. 11(3) (2008), 529-536.
  • [7] R. Heymann, Eigenvalues and stability properties of multiplication operators and multiplication semigroups, Math. Nachr., 287(5-6) (2014), 574-584.
  • [8] L. Maniar, S.Nafiri, Approximation and uniform polynomial stability of C0-semigroups, ESAIM Control Optim. Calc. Var., 22(1) (2016), 208-235.
  • [9] L. Paunonen, H. Zwart, A Lyapunov approach to strong stability of semigroups, Syst. & Control Let., 62 (2013), 673-678.
  • [10] C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Let., 25 (2012), 401-403.
  • [11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
  • [12] M.I. Gil’, Semigroups of sums of two operators with small commutators, Semigroup Forum, 98(1) (2019), 22-30.
  • [13] S.G. Krein, Linear Equations in a Banach Space, Amer. Math. Soc., Providence, R.I, 1971.
  • [14] M.I. Gil’, Stability of sums of operators, Ann. Univ. Ferrara, 62 (2016), 61-70.
Year 2019, , 129 - 134, 27.06.2019
https://doi.org/10.33434/cams.508305

Abstract

References

  • [1] R. Curtain, H. Zwart, Introduction to Infinite-Dimensional Systems Theory, Springer, New York, 1995.
  • [2] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, Vol. 209, Birkhauser Verlag, Basel, 2010.
  • [3] A. Batkai, K.-J. Engel, J. Pruus, R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr., 279 (13-14) (2006), 1425-1440.
  • [4] C.J.K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
  • [5] C. Buse, A. Khan, G. Rahmat, O. Saierli, Weak real integral characterizations for exponential stability of semigroups in reflexive spaces, Semigr. Forum, 88 (2014), 195-204.
  • [6] C. Buse, C. Niculescu, A condition of uniform exponential stability for semigroups, Math. Inequal. Appl. 11(3) (2008), 529-536.
  • [7] R. Heymann, Eigenvalues and stability properties of multiplication operators and multiplication semigroups, Math. Nachr., 287(5-6) (2014), 574-584.
  • [8] L. Maniar, S.Nafiri, Approximation and uniform polynomial stability of C0-semigroups, ESAIM Control Optim. Calc. Var., 22(1) (2016), 208-235.
  • [9] L. Paunonen, H. Zwart, A Lyapunov approach to strong stability of semigroups, Syst. & Control Let., 62 (2013), 673-678.
  • [10] C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Let., 25 (2012), 401-403.
  • [11] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.
  • [12] M.I. Gil’, Semigroups of sums of two operators with small commutators, Semigroup Forum, 98(1) (2019), 22-30.
  • [13] S.G. Krein, Linear Equations in a Banach Space, Amer. Math. Soc., Providence, R.I, 1971.
  • [14] M.I. Gil’, Stability of sums of operators, Ann. Univ. Ferrara, 62 (2016), 61-70.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Michael Gil' 0000-0002-6404-9618

Publication Date June 27, 2019
Submission Date January 4, 2019
Acceptance Date April 24, 2019
Published in Issue Year 2019

Cite

APA Gil’, M. (2019). Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences, 2(2), 129-134. https://doi.org/10.33434/cams.508305
AMA Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. June 2019;2(2):129-134. doi:10.33434/cams.508305
Chicago Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences 2, no. 2 (June 2019): 129-34. https://doi.org/10.33434/cams.508305.
EndNote Gil’ M (June 1, 2019) Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences 2 2 129–134.
IEEE M. Gil’, “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”, Communications in Advanced Mathematical Sciences, vol. 2, no. 2, pp. 129–134, 2019, doi: 10.33434/cams.508305.
ISNAD Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences 2/2 (June 2019), 129-134. https://doi.org/10.33434/cams.508305.
JAMA Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. 2019;2:129–134.
MLA Gil’, Michael. “Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators”. Communications in Advanced Mathematical Sciences, vol. 2, no. 2, 2019, pp. 129-34, doi:10.33434/cams.508305.
Vancouver Gil’ M. Stability Conditions for Perturbed Semigroups on a Hilbert Space via Commutators. Communications in Advanced Mathematical Sciences. 2019;2(2):129-34.

Cited By

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..