Research Article
BibTex RIS Cite
Year 2019, , 135 - 153, 27.06.2019
https://doi.org/10.33434/cams.512796

Abstract

References

  • [1] P. J. Davis, Interpolation and Approximation, Dover, N.Y., 1975.
  • [2] A. S. Househoulder, Principles of Numerical Analysis, McGraw Hill, Columbus, N.Y., 1953.
  • [3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Pub. Co., Cal., 1991.
  • [4] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, N.Y., 1965.
  • [5] N. Macon, A. Spitzbart, Inverses of Vandermonde matrices, Amer. Math. Monthly, 65(2) (1958), 95-100. http://dx.doi.org/10.2307/2308881
  • [6] E. Asplund, L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, N.Y., 1966.
  • [7] L. L. Schumaker, Spline Functions Basic Theory, Wiley, N.Y., 1981.
  • [8] G. Peano, Resto nelle formule di quadratura espresso con un integrale definito, Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., Serie 5, 22(I) (1913), 562-569.
  • [9] R. von Mises, U¨ ber allgemeine quadraturformeln, J. Reine Angew. Math., 174 (1935), 56-67; reprinted in Selected Papers of Richard von Mises, Vol. 1, 559-574, American Mathematical Society, Providence, R.I., 1963.
  • [10] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Academic Press, N.Y., 1970.
  • [11] F. Dubeau, Revisited optimal error bounds for interpolatory integration rules, Adv. Numer. Anal., 2016 (2016), Article ID 3170595, 8 pages, http://dx.doi.org/10.1155/2016/3170595.
  • [12] F. Dubeau, The method of undetermined coefficients: general approach and optimal error bounds, J. Math. Anal., 5(4) (2014), 1-11.
  • [13] J. S. C. Prentice, Truncation and roundoff errors in three-point approximations of first and second derivatives, Appl. Math. Comput., 217 (2011), 4576-4581. http://dx.doi.org/10.1016/j.amc.2010.11.008
  • [14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PN, 2002. http://dx.doi.org/10.1137/1.9780898718027

Standard and Corrected Numerical Differentiation Formulae

Year 2019, , 135 - 153, 27.06.2019
https://doi.org/10.33434/cams.512796

Abstract

Standard numerical differentiation rules that might be established by the method of undetermined coefficients are revisited. Best truncation error bounds are established by a direct method and by the method of integration by parts "backwards". A new method to increase the order of the truncation error using a primitive is presented. This approach leads to corrected numerical differentiation rules. Differentiation formulae and numerical tests are presented.

References

  • [1] P. J. Davis, Interpolation and Approximation, Dover, N.Y., 1975.
  • [2] A. S. Househoulder, Principles of Numerical Analysis, McGraw Hill, Columbus, N.Y., 1953.
  • [3] D. Kincaid, W. Cheney, Numerical Analysis, Brooks/Cole Pub. Co., Cal., 1991.
  • [4] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, N.Y., 1965.
  • [5] N. Macon, A. Spitzbart, Inverses of Vandermonde matrices, Amer. Math. Monthly, 65(2) (1958), 95-100. http://dx.doi.org/10.2307/2308881
  • [6] E. Asplund, L. Bungart, A First Course in Integration, Holt, Rinehart and Winston, N.Y., 1966.
  • [7] L. L. Schumaker, Spline Functions Basic Theory, Wiley, N.Y., 1981.
  • [8] G. Peano, Resto nelle formule di quadratura espresso con un integrale definito, Atti. Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., Serie 5, 22(I) (1913), 562-569.
  • [9] R. von Mises, U¨ ber allgemeine quadraturformeln, J. Reine Angew. Math., 174 (1935), 56-67; reprinted in Selected Papers of Richard von Mises, Vol. 1, 559-574, American Mathematical Society, Providence, R.I., 1963.
  • [10] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Academic Press, N.Y., 1970.
  • [11] F. Dubeau, Revisited optimal error bounds for interpolatory integration rules, Adv. Numer. Anal., 2016 (2016), Article ID 3170595, 8 pages, http://dx.doi.org/10.1155/2016/3170595.
  • [12] F. Dubeau, The method of undetermined coefficients: general approach and optimal error bounds, J. Math. Anal., 5(4) (2014), 1-11.
  • [13] J. S. C. Prentice, Truncation and roundoff errors in three-point approximations of first and second derivatives, Appl. Math. Comput., 217 (2011), 4576-4581. http://dx.doi.org/10.1016/j.amc.2010.11.008
  • [14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM, Philadelphia, PN, 2002. http://dx.doi.org/10.1137/1.9780898718027
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

François Dubeau 0000-0002-2956-3208

Publication Date June 27, 2019
Submission Date January 14, 2019
Acceptance Date April 12, 2019
Published in Issue Year 2019

Cite

APA Dubeau, F. (2019). Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences, 2(2), 135-153. https://doi.org/10.33434/cams.512796
AMA Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. June 2019;2(2):135-153. doi:10.33434/cams.512796
Chicago Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences 2, no. 2 (June 2019): 135-53. https://doi.org/10.33434/cams.512796.
EndNote Dubeau F (June 1, 2019) Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences 2 2 135–153.
IEEE F. Dubeau, “Standard and Corrected Numerical Differentiation Formulae”, Communications in Advanced Mathematical Sciences, vol. 2, no. 2, pp. 135–153, 2019, doi: 10.33434/cams.512796.
ISNAD Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences 2/2 (June 2019), 135-153. https://doi.org/10.33434/cams.512796.
JAMA Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. 2019;2:135–153.
MLA Dubeau, François. “Standard and Corrected Numerical Differentiation Formulae”. Communications in Advanced Mathematical Sciences, vol. 2, no. 2, 2019, pp. 135-53, doi:10.33434/cams.512796.
Vancouver Dubeau F. Standard and Corrected Numerical Differentiation Formulae. Communications in Advanced Mathematical Sciences. 2019;2(2):135-53.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..