Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 206 - 212, 30.09.2019
https://doi.org/10.33434/cams.515711

Abstract

References

  • [1] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
  • [2] M. Gromov, Volume and bounded cohomology, Publ. Math. IHES, 56 (1982), 5-100.
  • [3] R. Frigerio, Bounded cohomology of discrete groups, Amer. Math. Soc., 227 (2017).
  • [4] E. H. Brown, R. H. Szczarba, Continuous cohomology and real homotopy type, Trans. Amer. Math. Soc., 311(1) (1989), 57-106.
  • [5] L. Mdzinarishvili, Continuous singular cohomology, Georgian Math. J., 16 (2009), 321–342.
  • [6] M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc., 7 (1976), 1–142.
  • [7] J. D. Stasheff, Continuous cohomology of groups and classifying spaces, Bull. Amer. Math. Soc., 84(4) (1978), 513-530
  • [8] R. Frigerio, (Bounded) Continuous cohomology and Gromov’s proportionality principle, Manuscripta Math., 134(3-4) (2011), 435-474.
  • [9] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture notes in Mathematics, no. 1758, Springer- Verlag, Berlin, 2001.
  • [10] R. Brooks, Some remarks on bounded cohomology, Ann. Math. Studies, 97 (1980), 53-63.
  • [11] R. I. Grigorchuk, Some results on bounded cohomology, Combinatorial and geometric group theory, Edinburgh, (1993), 111-163.
  • [12] N. V. Ivanov, Foundation of the theory of bounded cohomology, J. Soviet Math., 143 (1985), 69-109.
  • [13] M. M. Sadr, A. Pourabbas, Johnson amenability for topological semigroups, Iran. J. Sci. Technol. Trans. A Sci., 32(A2), (2010), 151-160.
  • [14] C. Löh, The Proportionality principle of simplicial volume, Diploma thesis, Universitat Munster, 2004.
  • [15] C. Löh, Measure homology and singular homology are isometrically isomorphic, Math. Z., 253 (2006), 197–218.
  • [16] A. Y. Helemskii, The homology of Banach and topological algebras, Kluwer, Dordrecht, 1989.
  • [17] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
  • [18] A. L. T. Paterson, Amenability, Amer. Math. Soc. Providence, 1978.
  • [19] V. A. Faiziev, Pseudocharacters on a free group and some group constructions, Russian Math. Surveys, 43 (1988), 225-226.
  • [20] Y. Choi, Cohomology of commutative Banach algebras and `-semigroup algebras, Ph.D. thesis, University of Newcastle upon Tyne, 2006.
  • [21] M. R. Bridson, A. Haefliger, Metric spaces of non positive curvature, Springer-Verlag, 1999.

On the Cohomology of Topological Semigroups

Year 2019, Volume: 2 Issue: 3, 206 - 212, 30.09.2019
https://doi.org/10.33434/cams.515711

Abstract

In this short note, we give some new results on continuous bounded cohomology groups of topological semigroups with values in complex field. We show that the second continuous bounded cohomology group of a compact metrizable semigroup, is a Banach space. Also, we study cohomology groups of amenable topological semigroups, and we show that cohomology groups of rank greater than one of a compact left or right amenable semigroup, are trivial. Also, we give some examples and applications about topological lattices.

References

  • [1] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
  • [2] M. Gromov, Volume and bounded cohomology, Publ. Math. IHES, 56 (1982), 5-100.
  • [3] R. Frigerio, Bounded cohomology of discrete groups, Amer. Math. Soc., 227 (2017).
  • [4] E. H. Brown, R. H. Szczarba, Continuous cohomology and real homotopy type, Trans. Amer. Math. Soc., 311(1) (1989), 57-106.
  • [5] L. Mdzinarishvili, Continuous singular cohomology, Georgian Math. J., 16 (2009), 321–342.
  • [6] M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc., 7 (1976), 1–142.
  • [7] J. D. Stasheff, Continuous cohomology of groups and classifying spaces, Bull. Amer. Math. Soc., 84(4) (1978), 513-530
  • [8] R. Frigerio, (Bounded) Continuous cohomology and Gromov’s proportionality principle, Manuscripta Math., 134(3-4) (2011), 435-474.
  • [9] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture notes in Mathematics, no. 1758, Springer- Verlag, Berlin, 2001.
  • [10] R. Brooks, Some remarks on bounded cohomology, Ann. Math. Studies, 97 (1980), 53-63.
  • [11] R. I. Grigorchuk, Some results on bounded cohomology, Combinatorial and geometric group theory, Edinburgh, (1993), 111-163.
  • [12] N. V. Ivanov, Foundation of the theory of bounded cohomology, J. Soviet Math., 143 (1985), 69-109.
  • [13] M. M. Sadr, A. Pourabbas, Johnson amenability for topological semigroups, Iran. J. Sci. Technol. Trans. A Sci., 32(A2), (2010), 151-160.
  • [14] C. Löh, The Proportionality principle of simplicial volume, Diploma thesis, Universitat Munster, 2004.
  • [15] C. Löh, Measure homology and singular homology are isometrically isomorphic, Math. Z., 253 (2006), 197–218.
  • [16] A. Y. Helemskii, The homology of Banach and topological algebras, Kluwer, Dordrecht, 1989.
  • [17] V. Runde, Lectures on amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
  • [18] A. L. T. Paterson, Amenability, Amer. Math. Soc. Providence, 1978.
  • [19] V. A. Faiziev, Pseudocharacters on a free group and some group constructions, Russian Math. Surveys, 43 (1988), 225-226.
  • [20] Y. Choi, Cohomology of commutative Banach algebras and `-semigroup algebras, Ph.D. thesis, University of Newcastle upon Tyne, 2006.
  • [21] M. R. Bridson, A. Haefliger, Metric spaces of non positive curvature, Springer-Verlag, 1999.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Maysam Maysami Sadr 0000-0003-0747-4180

Danial Bouzarjomehri Amnieh This is me 0000-0002-0883-6510

Publication Date September 30, 2019
Submission Date January 21, 2019
Acceptance Date July 29, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Maysami Sadr, M., & Bouzarjomehri Amnieh, D. (2019). On the Cohomology of Topological Semigroups. Communications in Advanced Mathematical Sciences, 2(3), 206-212. https://doi.org/10.33434/cams.515711
AMA Maysami Sadr M, Bouzarjomehri Amnieh D. On the Cohomology of Topological Semigroups. Communications in Advanced Mathematical Sciences. September 2019;2(3):206-212. doi:10.33434/cams.515711
Chicago Maysami Sadr, Maysam, and Danial Bouzarjomehri Amnieh. “On the Cohomology of Topological Semigroups”. Communications in Advanced Mathematical Sciences 2, no. 3 (September 2019): 206-12. https://doi.org/10.33434/cams.515711.
EndNote Maysami Sadr M, Bouzarjomehri Amnieh D (September 1, 2019) On the Cohomology of Topological Semigroups. Communications in Advanced Mathematical Sciences 2 3 206–212.
IEEE M. Maysami Sadr and D. Bouzarjomehri Amnieh, “On the Cohomology of Topological Semigroups”, Communications in Advanced Mathematical Sciences, vol. 2, no. 3, pp. 206–212, 2019, doi: 10.33434/cams.515711.
ISNAD Maysami Sadr, Maysam - Bouzarjomehri Amnieh, Danial. “On the Cohomology of Topological Semigroups”. Communications in Advanced Mathematical Sciences 2/3 (September 2019), 206-212. https://doi.org/10.33434/cams.515711.
JAMA Maysami Sadr M, Bouzarjomehri Amnieh D. On the Cohomology of Topological Semigroups. Communications in Advanced Mathematical Sciences. 2019;2:206–212.
MLA Maysami Sadr, Maysam and Danial Bouzarjomehri Amnieh. “On the Cohomology of Topological Semigroups”. Communications in Advanced Mathematical Sciences, vol. 2, no. 3, 2019, pp. 206-12, doi:10.33434/cams.515711.
Vancouver Maysami Sadr M, Bouzarjomehri Amnieh D. On the Cohomology of Topological Semigroups. Communications in Advanced Mathematical Sciences. 2019;2(3):206-12.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..