Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 182 - 191, 30.09.2019
https://doi.org/10.33434/cams.528305

Abstract

References

  • [1] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I - Sequence Spaces, Springer Verlag, Berlin-Heidelberg- New York, 1977.
  • [2] R. F. Curtain, H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics 21, Sringer Verlag, New York-Berlin, 1995.
  • [3] I. Singer, Bases in Banach Spaces I, Springer Verlag, Berlin-Heidelberg- New York, 1970.
  • [4] R. F. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Control, 10(2) (1972) 329-353.
  • [5] D. Barcenas, J. Diestel, Constrained controllability in non reflexive Banach spaces, Quaest. Math.,18 (1995), 185-198.
  • [6] J. Diestel, Grothendieck spaces in vector measures. Contained in Vector and Operator Valued Measures and Applications, Proc. Sympos. Alta Utah, 1972. Academic Press, NY, USA, (1973), 97-108.
  • [7] D. Barcenas, L. G. M´armol, On the adjoint of a strongly continuous semigroup, Abstr. Appl. Anal., 2008 (2008), Article ID 651294.
  • [8] P. Habala, P. Hajek, V. Zizler, Introduction to Banach Spaces I. Mat Fiz press vy davatelstvi Matematicko-Fyzik ˆ alni Fakulty Univerzity Karlovy, 1996.
  • [9] R. Manzanilla, L. G. Marmol, C. J. Vanegas, On the controllability of a differential equation with delayed and advanced arguments, Abstr. Appl. Anal., 2010 (2010), 1-16.
  • [10] V. Iakovleva, R. Manzanilla, L. G. Marmol, C. J. Vanegas, Solutions and Constrained null-controllability for a differentialdifference equation, Math. Slovaca, 66(1) (2016), 169-184.
  • [11] V. Iakovleva, C. J. Vanegas, Spectral analysis of the semigroup associated to a mixed functional differential equation, Int. J. Pure Appl. Math. 72(4) (2011), 491-499.
  • [12] V. Iakovleva, C. J. Vanegas, Smooth Solution of an Initial Value Problem for a Mixed-Type Differential Difference Equation. Contained in Current trends in Analysis and its Applications. Vol. XVI, Proceedings of the 9th ISAAC Congress, Krakow 2013. Editors Mityushev, Vladimir, Ruzhansky, Michael. Birkh¨auser Basel, (2015), 649-654.

Delay Differential Equations in Sequence Spaces

Year 2019, Volume: 2 Issue: 3, 182 - 191, 30.09.2019
https://doi.org/10.33434/cams.528305

Abstract

The standard  delay equations are newly studied in the context of classical separable Banach Sequence Spaces.  As a classical solution is shown to exist, the associated semigroup and its infinitesimal generator are found, and some important properties of those operators are proven, including some spectral properties. As an application, it is shown how can these results be used to characterize the constrained null-controllability.

References

  • [1] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I - Sequence Spaces, Springer Verlag, Berlin-Heidelberg- New York, 1977.
  • [2] R. F. Curtain, H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics 21, Sringer Verlag, New York-Berlin, 1995.
  • [3] I. Singer, Bases in Banach Spaces I, Springer Verlag, Berlin-Heidelberg- New York, 1970.
  • [4] R. F. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Control, 10(2) (1972) 329-353.
  • [5] D. Barcenas, J. Diestel, Constrained controllability in non reflexive Banach spaces, Quaest. Math.,18 (1995), 185-198.
  • [6] J. Diestel, Grothendieck spaces in vector measures. Contained in Vector and Operator Valued Measures and Applications, Proc. Sympos. Alta Utah, 1972. Academic Press, NY, USA, (1973), 97-108.
  • [7] D. Barcenas, L. G. M´armol, On the adjoint of a strongly continuous semigroup, Abstr. Appl. Anal., 2008 (2008), Article ID 651294.
  • [8] P. Habala, P. Hajek, V. Zizler, Introduction to Banach Spaces I. Mat Fiz press vy davatelstvi Matematicko-Fyzik ˆ alni Fakulty Univerzity Karlovy, 1996.
  • [9] R. Manzanilla, L. G. Marmol, C. J. Vanegas, On the controllability of a differential equation with delayed and advanced arguments, Abstr. Appl. Anal., 2010 (2010), 1-16.
  • [10] V. Iakovleva, R. Manzanilla, L. G. Marmol, C. J. Vanegas, Solutions and Constrained null-controllability for a differentialdifference equation, Math. Slovaca, 66(1) (2016), 169-184.
  • [11] V. Iakovleva, C. J. Vanegas, Spectral analysis of the semigroup associated to a mixed functional differential equation, Int. J. Pure Appl. Math. 72(4) (2011), 491-499.
  • [12] V. Iakovleva, C. J. Vanegas, Smooth Solution of an Initial Value Problem for a Mixed-Type Differential Difference Equation. Contained in Current trends in Analysis and its Applications. Vol. XVI, Proceedings of the 9th ISAAC Congress, Krakow 2013. Editors Mityushev, Vladimir, Ruzhansky, Michael. Birkh¨auser Basel, (2015), 649-654.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Luis Gerardo Mármol 0000-0003-4996-8090

Carmen Judith Vanegas This is me 0000-0003-0748-5963

Publication Date September 30, 2019
Submission Date February 18, 2019
Acceptance Date July 16, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Mármol, L. G., & Vanegas, C. J. (2019). Delay Differential Equations in Sequence Spaces. Communications in Advanced Mathematical Sciences, 2(3), 182-191. https://doi.org/10.33434/cams.528305
AMA Mármol LG, Vanegas CJ. Delay Differential Equations in Sequence Spaces. Communications in Advanced Mathematical Sciences. September 2019;2(3):182-191. doi:10.33434/cams.528305
Chicago Mármol, Luis Gerardo, and Carmen Judith Vanegas. “Delay Differential Equations in Sequence Spaces”. Communications in Advanced Mathematical Sciences 2, no. 3 (September 2019): 182-91. https://doi.org/10.33434/cams.528305.
EndNote Mármol LG, Vanegas CJ (September 1, 2019) Delay Differential Equations in Sequence Spaces. Communications in Advanced Mathematical Sciences 2 3 182–191.
IEEE L. G. Mármol and C. J. Vanegas, “Delay Differential Equations in Sequence Spaces”, Communications in Advanced Mathematical Sciences, vol. 2, no. 3, pp. 182–191, 2019, doi: 10.33434/cams.528305.
ISNAD Mármol, Luis Gerardo - Vanegas, Carmen Judith. “Delay Differential Equations in Sequence Spaces”. Communications in Advanced Mathematical Sciences 2/3 (September 2019), 182-191. https://doi.org/10.33434/cams.528305.
JAMA Mármol LG, Vanegas CJ. Delay Differential Equations in Sequence Spaces. Communications in Advanced Mathematical Sciences. 2019;2:182–191.
MLA Mármol, Luis Gerardo and Carmen Judith Vanegas. “Delay Differential Equations in Sequence Spaces”. Communications in Advanced Mathematical Sciences, vol. 2, no. 3, 2019, pp. 182-91, doi:10.33434/cams.528305.
Vancouver Mármol LG, Vanegas CJ. Delay Differential Equations in Sequence Spaces. Communications in Advanced Mathematical Sciences. 2019;2(3):182-91.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..