Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 3, 155 - 161, 29.09.2020

Abstract

References

  • [1] F. Başar, Domain of the composition of some triangles in the space of p-summable sequences, AIP Conference Proceedings, 1611 (2014), 348–356.
  • [2] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, Istanbul–2012.
  • [3] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1) (2007), 632–645.
  • [4] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 576(1996).
  • [5] G. Bennett, Lower bounds for matrices, Linear Algebra Appl., 82(1986), 81-98.
  • [6] C. P. Chen, D. C. Luor, and Z. y. Ou, Extensions of Hardy inequality, J. Math. Anal. Appl. 273 (2002), 160–171.
  • [7] G. H. Hardy, Divergent Series, Oxford University press, 1973.
  • [8] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd edition, Cambridge University press, Cambridge, 2001.
  • [9] M. İlkhan, Norms and lower bounds of some matrix operators on Fibonacci weighted difference sequence space, Math. Methods Appl. Sci., 42(16) (2019), 5143-5153.
  • [10] P. N. Ng, P. Y. Lee, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace Mat. 20(2) (1978), 429-433.
  • [11] H. Roopaei and D. Foroutannia, The norm of matrix operators on Ces`aro weighted sequence space, Linear Multilinear Algebra, 67 (1) (2019), 175-185.
  • [12] H. Roopaei and D. Foroutannia, The norms of certain matrix operators from `p spaces into p(Dn) spaces, Linear Multilinear Algebra, 67 (4) (2019), 767-776.
  • [13] H. Roopaei, Factorization of Cesaro and Hilbert matrices based on generalized Cesaro matrix, Linear Multilinear Algebra, 68 (1) (2020), 193-204.
  • [14] H. Roopaei, Factorization of the Hilbert matrix based on Ces`aro and Gamma matrices, Results Math, 75(1) (2020), 3, published online.
  • [15] H. Roopaei, Norms of summability and Hausdorff mean matrices on difference sequence spaces, Math. Inequal. Appl., 22 (3) (2019), 983-987.
  • [16] H. Roopaei, D. Foroutannia, M. İlkhan, E. E. Kara, Cesaro Spaces and Norm of Operators on These Matrix Domains, Mediterr. J. Math., 17 (2020), 121.
  • [17] H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl. 2020 (2020), 117.
  • [18] H. Roopaei, A study on Copson operator and its associated sequence spaces, J. Inequal. Appl. 2020:120, (2020).
  • [19] H. Roopaei, Bounds of operators on the Hilbert sequence space, Concr. Oper. (7) (2020), 155–165.
  • [20] M. Şengönül, F. Başar, Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107-119.

Norm of Operators on the Generalized Cesàro Matrix Domain

Year 2020, Volume: 3 Issue: 3, 155 - 161, 29.09.2020

Abstract

Roopaei in [13] has introduced some factorization for the infinite Hilbert matrix and
the Cesàro matrix of order n based on the generalized Cesàro matrix. In this research,
we investigate the norm of these two operators on the generalized Cesàro matrix domain.
Moreover we introduce some factorizations for the Hilbert matrix. Hence the present study
is a complement of Roopaei’s research. There are several new Banach spaces who have
introduced and studied by using matrix domains of special lower triangular matrices. For more
references we encourage the readers to some papers [1, 3, 17, 18] and textbook [2].

Thanks

Thanks in advanced.

References

  • [1] F. Başar, Domain of the composition of some triangles in the space of p-summable sequences, AIP Conference Proceedings, 1611 (2014), 348–356.
  • [2] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, Istanbul–2012.
  • [3] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1) (2007), 632–645.
  • [4] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 576(1996).
  • [5] G. Bennett, Lower bounds for matrices, Linear Algebra Appl., 82(1986), 81-98.
  • [6] C. P. Chen, D. C. Luor, and Z. y. Ou, Extensions of Hardy inequality, J. Math. Anal. Appl. 273 (2002), 160–171.
  • [7] G. H. Hardy, Divergent Series, Oxford University press, 1973.
  • [8] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd edition, Cambridge University press, Cambridge, 2001.
  • [9] M. İlkhan, Norms and lower bounds of some matrix operators on Fibonacci weighted difference sequence space, Math. Methods Appl. Sci., 42(16) (2019), 5143-5153.
  • [10] P. N. Ng, P. Y. Lee, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace Mat. 20(2) (1978), 429-433.
  • [11] H. Roopaei and D. Foroutannia, The norm of matrix operators on Ces`aro weighted sequence space, Linear Multilinear Algebra, 67 (1) (2019), 175-185.
  • [12] H. Roopaei and D. Foroutannia, The norms of certain matrix operators from `p spaces into p(Dn) spaces, Linear Multilinear Algebra, 67 (4) (2019), 767-776.
  • [13] H. Roopaei, Factorization of Cesaro and Hilbert matrices based on generalized Cesaro matrix, Linear Multilinear Algebra, 68 (1) (2020), 193-204.
  • [14] H. Roopaei, Factorization of the Hilbert matrix based on Ces`aro and Gamma matrices, Results Math, 75(1) (2020), 3, published online.
  • [15] H. Roopaei, Norms of summability and Hausdorff mean matrices on difference sequence spaces, Math. Inequal. Appl., 22 (3) (2019), 983-987.
  • [16] H. Roopaei, D. Foroutannia, M. İlkhan, E. E. Kara, Cesaro Spaces and Norm of Operators on These Matrix Domains, Mediterr. J. Math., 17 (2020), 121.
  • [17] H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl. 2020 (2020), 117.
  • [18] H. Roopaei, A study on Copson operator and its associated sequence spaces, J. Inequal. Appl. 2020:120, (2020).
  • [19] H. Roopaei, Bounds of operators on the Hilbert sequence space, Concr. Oper. (7) (2020), 155–165.
  • [20] M. Şengönül, F. Başar, Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math., 31(1) (2005), 107-119.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Maryam Sinaei

Publication Date September 29, 2020
Submission Date August 15, 2020
Acceptance Date September 22, 2020
Published in Issue Year 2020 Volume: 3 Issue: 3

Cite

APA Sinaei, M. (2020). Norm of Operators on the Generalized Cesàro Matrix Domain. Communications in Advanced Mathematical Sciences, 3(3), 155-161.
AMA Sinaei M. Norm of Operators on the Generalized Cesàro Matrix Domain. Communications in Advanced Mathematical Sciences. September 2020;3(3):155-161.
Chicago Sinaei, Maryam. “Norm of Operators on the Generalized Cesàro Matrix Domain”. Communications in Advanced Mathematical Sciences 3, no. 3 (September 2020): 155-61.
EndNote Sinaei M (September 1, 2020) Norm of Operators on the Generalized Cesàro Matrix Domain. Communications in Advanced Mathematical Sciences 3 3 155–161.
IEEE M. Sinaei, “Norm of Operators on the Generalized Cesàro Matrix Domain”, Communications in Advanced Mathematical Sciences, vol. 3, no. 3, pp. 155–161, 2020.
ISNAD Sinaei, Maryam. “Norm of Operators on the Generalized Cesàro Matrix Domain”. Communications in Advanced Mathematical Sciences 3/3 (September 2020), 155-161.
JAMA Sinaei M. Norm of Operators on the Generalized Cesàro Matrix Domain. Communications in Advanced Mathematical Sciences. 2020;3:155–161.
MLA Sinaei, Maryam. “Norm of Operators on the Generalized Cesàro Matrix Domain”. Communications in Advanced Mathematical Sciences, vol. 3, no. 3, 2020, pp. 155-61.
Vancouver Sinaei M. Norm of Operators on the Generalized Cesàro Matrix Domain. Communications in Advanced Mathematical Sciences. 2020;3(3):155-61.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..