Research Article
BibTex RIS Cite

Orthoptic Sets and Quadric Hypersurfaces

Year 2021, Volume: 4 Issue: 3, 130 - 136, 30.09.2021
https://doi.org/10.33434/cams.917192

Abstract

Orthoptic curves for the conics are well known.
It is the Monge's circle for ellipse and hyperbola, and for parabola it is its directrix.
These conics are level sets of quadratic functions in the plane.
We consider level sets of quadratic functions in higher dimension, known as quadric hypersurfaces.
For these hypersurfaces we present and study their orthoptic sets, which extend the idea of orthoptic curves for conics.

Supporting Institution

Université de Sherbrooke, NSERC (Natural Sciences and Engineering Research Council of Canada)

Thanks

This work has been financially supported by an individual discovery grant from NSERC (Natural Sciences and Engineering Research Council of Canada)

References

  • [1] I. Assem and J.C. Bustamante (2017). Ge ́ome ́trie analytique, Presses internationales Polytechnique, Montre ́al. ́
  • [2] Y. Ladegaillerie, Ge ́ometrie affine, projective, euclidienne et anallagmatique, Ellipses Edition Marketing S.A., Paris, 2003.
  • [3] O.J. Staude, Fla ̈chen 2. Ordnung und ihre Systeme und Durchdringungskurven. Encyklopa ̈die der math., Wiss.III.2.1, no. C2, 161-256, B.G. Teubner, Leipzig, 2015.
  • [4] G. Glaeser, H. Stachel, B. Odehnal, The Universe of Conics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2016.
  • [5] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2020.
Year 2021, Volume: 4 Issue: 3, 130 - 136, 30.09.2021
https://doi.org/10.33434/cams.917192

Abstract

References

  • [1] I. Assem and J.C. Bustamante (2017). Ge ́ome ́trie analytique, Presses internationales Polytechnique, Montre ́al. ́
  • [2] Y. Ladegaillerie, Ge ́ometrie affine, projective, euclidienne et anallagmatique, Ellipses Edition Marketing S.A., Paris, 2003.
  • [3] O.J. Staude, Fla ̈chen 2. Ordnung und ihre Systeme und Durchdringungskurven. Encyklopa ̈die der math., Wiss.III.2.1, no. C2, 161-256, B.G. Teubner, Leipzig, 2015.
  • [4] G. Glaeser, H. Stachel, B. Odehnal, The Universe of Conics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2016.
  • [5] B. Odehnal, H. Stachel, G. Glaeser, The Universe of Quadrics, Springer Spektrum, Springer-Verlag Berlin Heidelberg, 2020.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

François Dubeau

Publication Date September 30, 2021
Submission Date April 15, 2021
Acceptance Date August 2, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Dubeau, F. (2021). Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences, 4(3), 130-136. https://doi.org/10.33434/cams.917192
AMA Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. September 2021;4(3):130-136. doi:10.33434/cams.917192
Chicago Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences 4, no. 3 (September 2021): 130-36. https://doi.org/10.33434/cams.917192.
EndNote Dubeau F (September 1, 2021) Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences 4 3 130–136.
IEEE F. Dubeau, “Orthoptic Sets and Quadric Hypersurfaces”, Communications in Advanced Mathematical Sciences, vol. 4, no. 3, pp. 130–136, 2021, doi: 10.33434/cams.917192.
ISNAD Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences 4/3 (September 2021), 130-136. https://doi.org/10.33434/cams.917192.
JAMA Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. 2021;4:130–136.
MLA Dubeau, François. “Orthoptic Sets and Quadric Hypersurfaces”. Communications in Advanced Mathematical Sciences, vol. 4, no. 3, 2021, pp. 130-6, doi:10.33434/cams.917192.
Vancouver Dubeau F. Orthoptic Sets and Quadric Hypersurfaces. Communications in Advanced Mathematical Sciences. 2021;4(3):130-6.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..