The main goal of this paper is to study the bifurcation of a second order rational difference equation
$$x_{n+1}=\frac{\alpha+\beta x_{n-1}}{A+Bx_{n}+Cx_{n-1}}, ~~n=0, 1, 2, \ldots$$
with positive parameters $\alpha, \beta, A, B, C$ and non-negative initial conditions $\{x_{-k}, x_{-k+1}, \ldots, x_{0}\}$. We study the dynamic behavior and the direction of the bifurcation of the period-two cycle. Numerical discussion with figures are given to support our results.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Haziran 2022 |
Gönderilme Tarihi | 24 Kasım 2021 |
Kabul Tarihi | 21 Nisan 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 5 Sayı: 2 |
CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.