Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 4, 188 - 195, 25.12.2023
https://doi.org/10.33434/cams.1363596

Abstract

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • [2] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361–375.
  • [3] P. Kostyrko, T. Salat, W. Wilczynski, $\mathcal{I}$-Convergence, Real Anal. Exchange, 26(2)(2000), 669–686.
  • [4] A. Nabiev, S. Pehlivan, M. Gürdal, On $\mathcal{I}$-Cauchy sequence, Taiwanese J. Math. 11(2)(2007), 569–576.
  • [5] P. Das, E. Savaş, S.Kr. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letter, 36(2011), 1509–1514.
  • [6] U. Yamancı, M. Gürdal, On lacunary ideal convergence in random n-normed space, J. Math., Volume 2013, Article ID 868457, 8 pages http://dx.doi.org/10.1155/2013/868457
  • [7] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63(2012), 708–715.
  • [8] B.C. Tripathy, B. Hazarika, B. Choudhary, Lacunary $\mathcal{I}$-convergent sequences, Kyungpook Math. J. 52(2012), 473–482.
  • [9] N.P. Akın, E. Dündar, Ş. Yalvaç, Lacunary I$\mathcal{I}^{\ast }$-convergence and lacunary $\mathcal{I}^{\ast }$-Cauchy sequence, AKU J. Sci. Eng (in press).
  • [10] N.P. Akın, E. Dündar, Strongly lacunary $\mathcal{I}^{\ast }$-convergence and strongly lacunary $\mathcal{I}^{\ast }$-Cauchy sequence, Math. Sci. Appl. E-Notes, (in press).
  • [11] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, $\mathcal{I}$ and $\mathcal{I}^{\ast }$-convergence of double sequences, Math. Slovaca, 58(5)(2008), 605–620.
  • [12] E. Dündar, B. Altay, $\mathcal{I}_2$-convergence and $\mathcal{I}_2$-Cauchy of double sequences, Acta Math. Sci., 34B(2)(2014), 343–353.
  • [13] E. Dündar, B. Altay, On some properties of $\mathcal{I}_2$-convergence and $\mathcal{I}_2$-Cauchy of double sequences, Gen. Math. Notes, 7(1)(2011) 1–12.
  • [14] E. Dündar, U. Ulusu, N. Pancaroˇglu, Strongly $\mathcal{I}_2$-lacunary convergence and $\mathcal{I}_2$-lacunary Cauchy double sequences of sets, Aligarh Bull. Math., 35(1-2)(2016), 1–15.
  • [15] B. Hazarika, Lacunary ideal convergence of multiple sequences, J. Egyptian Math. Soc., 24(2016), 54–59.
  • [16] E. Dündar, U. Ulusu, B. Aydın, $\mathcal{I}_2$-lacunary statistical convergence of double sequences of sets, Konuralp J. Math., 5(1)(2017), 1–10.
  • [17] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc. 37(1978), 508–520.
  • [18] Y. Sever, U. Ulusu, E. Dündar, On strongly I$\mathcal{I}$and I$\mathcal{I}^{\ast }$-lacunary convergence of sequences of sets, AIP Conf. Proc., 1611(357)(2014); doi: 10.1063/1.4893860, 7 pages.
  • [19] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Inform., 3(3)(2013), 75–88.
  • [20] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8)(2014), 1567–1574.

On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence

Year 2023, Volume: 6 Issue: 4, 188 - 195, 25.12.2023
https://doi.org/10.33434/cams.1363596

Abstract

In the study conducted here, we have given some new concepts in summability. In this sense, firstly, we have given the concept of lacunary $\mathcal{I}_2^{\ast}$-convergence and we have investigated the relations between lacunary $\mathcal{I}_2$-convergence and lacunary $\mathcal{I}_2^{\ast}$-convergence. Also, we have given the concept of lacunary $\mathcal{I}_2^{\ast}$-Cauchy sequence and investigated the
relations between lacunary $\mathcal{I}_2$-Cauchy sequence and lacunary $\mathcal{I}_2^{\ast}$-Cauchy sequence.

References

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241–244.
  • [2] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361–375.
  • [3] P. Kostyrko, T. Salat, W. Wilczynski, $\mathcal{I}$-Convergence, Real Anal. Exchange, 26(2)(2000), 669–686.
  • [4] A. Nabiev, S. Pehlivan, M. Gürdal, On $\mathcal{I}$-Cauchy sequence, Taiwanese J. Math. 11(2)(2007), 569–576.
  • [5] P. Das, E. Savaş, S.Kr. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letter, 36(2011), 1509–1514.
  • [6] U. Yamancı, M. Gürdal, On lacunary ideal convergence in random n-normed space, J. Math., Volume 2013, Article ID 868457, 8 pages http://dx.doi.org/10.1155/2013/868457
  • [7] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63(2012), 708–715.
  • [8] B.C. Tripathy, B. Hazarika, B. Choudhary, Lacunary $\mathcal{I}$-convergent sequences, Kyungpook Math. J. 52(2012), 473–482.
  • [9] N.P. Akın, E. Dündar, Ş. Yalvaç, Lacunary I$\mathcal{I}^{\ast }$-convergence and lacunary $\mathcal{I}^{\ast }$-Cauchy sequence, AKU J. Sci. Eng (in press).
  • [10] N.P. Akın, E. Dündar, Strongly lacunary $\mathcal{I}^{\ast }$-convergence and strongly lacunary $\mathcal{I}^{\ast }$-Cauchy sequence, Math. Sci. Appl. E-Notes, (in press).
  • [11] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, $\mathcal{I}$ and $\mathcal{I}^{\ast }$-convergence of double sequences, Math. Slovaca, 58(5)(2008), 605–620.
  • [12] E. Dündar, B. Altay, $\mathcal{I}_2$-convergence and $\mathcal{I}_2$-Cauchy of double sequences, Acta Math. Sci., 34B(2)(2014), 343–353.
  • [13] E. Dündar, B. Altay, On some properties of $\mathcal{I}_2$-convergence and $\mathcal{I}_2$-Cauchy of double sequences, Gen. Math. Notes, 7(1)(2011) 1–12.
  • [14] E. Dündar, U. Ulusu, N. Pancaroˇglu, Strongly $\mathcal{I}_2$-lacunary convergence and $\mathcal{I}_2$-lacunary Cauchy double sequences of sets, Aligarh Bull. Math., 35(1-2)(2016), 1–15.
  • [15] B. Hazarika, Lacunary ideal convergence of multiple sequences, J. Egyptian Math. Soc., 24(2016), 54–59.
  • [16] E. Dündar, U. Ulusu, B. Aydın, $\mathcal{I}_2$-lacunary statistical convergence of double sequences of sets, Konuralp J. Math., 5(1)(2017), 1–10.
  • [17] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. Lond. Math. Soc. 37(1978), 508–520.
  • [18] Y. Sever, U. Ulusu, E. Dündar, On strongly I$\mathcal{I}$and I$\mathcal{I}^{\ast }$-lacunary convergence of sequences of sets, AIP Conf. Proc., 1611(357)(2014); doi: 10.1063/1.4893860, 7 pages.
  • [19] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Inform., 3(3)(2013), 75–88.
  • [20] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8)(2014), 1567–1574.
There are 20 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Nimet Pancaroğlu Akın 0000-0003-4661-5388

Erdinç Dündar 0000-0002-0545-7486

Early Pub Date November 7, 2023
Publication Date December 25, 2023
Submission Date September 20, 2023
Acceptance Date November 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 4

Cite

APA Pancaroğlu Akın, N., & Dündar, E. (2023). On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence. Communications in Advanced Mathematical Sciences, 6(4), 188-195. https://doi.org/10.33434/cams.1363596
AMA Pancaroğlu Akın N, Dündar E. On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence. Communications in Advanced Mathematical Sciences. December 2023;6(4):188-195. doi:10.33434/cams.1363596
Chicago Pancaroğlu Akın, Nimet, and Erdinç Dündar. “On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence”. Communications in Advanced Mathematical Sciences 6, no. 4 (December 2023): 188-95. https://doi.org/10.33434/cams.1363596.
EndNote Pancaroğlu Akın N, Dündar E (December 1, 2023) On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence. Communications in Advanced Mathematical Sciences 6 4 188–195.
IEEE N. Pancaroğlu Akın and E. Dündar, “On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence”, Communications in Advanced Mathematical Sciences, vol. 6, no. 4, pp. 188–195, 2023, doi: 10.33434/cams.1363596.
ISNAD Pancaroğlu Akın, Nimet - Dündar, Erdinç. “On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence”. Communications in Advanced Mathematical Sciences 6/4 (December 2023), 188-195. https://doi.org/10.33434/cams.1363596.
JAMA Pancaroğlu Akın N, Dündar E. On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence. Communications in Advanced Mathematical Sciences. 2023;6:188–195.
MLA Pancaroğlu Akın, Nimet and Erdinç Dündar. “On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence”. Communications in Advanced Mathematical Sciences, vol. 6, no. 4, 2023, pp. 188-95, doi:10.33434/cams.1363596.
Vancouver Pancaroğlu Akın N, Dündar E. On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence. Communications in Advanced Mathematical Sciences. 2023;6(4):188-95.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..