Let $H$ be a Hilbert space. In this paper we show among others that, if the
selfadjoint operators $A$ and $B$ satisfy the condition $0$ $<$ $m\leq A,$ $B\leq
M,$ for some constants $m,$ $M,$ then
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right) \\
& \leq \left( 1-\nu \right) A\otimes 1+\nu 1\otimes B-A^{1-\nu }\otimes
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$ We also have the inequalities for
Hadamard product
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right) \\
& \leq \left[ \left( 1-\nu \right) A+\nu B\right] \circ 1-A^{1-\nu }\circ
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$
Primary Language | English |
---|---|
Subjects | Pure Mathematics (Other) |
Journal Section | Articles |
Authors | |
Early Pub Date | March 4, 2024 |
Publication Date | March 4, 2024 |
Submission Date | September 19, 2023 |
Acceptance Date | February 19, 2024 |
Published in Issue | Year 2024 Volume: 7 Issue: 1 |
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..