Research Article
BibTex RIS Cite

The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design

Year 2025, Volume: 8 Issue: 1, 1 - 10
https://doi.org/10.33434/cams.1559808

Abstract

The paper presents the mathematical dynamics and numerical simulations for a fractional-order social media addiction (FSMA) model. This addiction structure is replaced by involving the Caputo fractional (CF) derivative to get the FSMA model. In this study, our main goal is to understand how the fractional derivative impresses the dynamics of the model. Thus, the theoretical properties are first examined. Afterward, the stability properties of the mentioned model are discussed. Besides, the fractional backward differentiation formula (FBDF) displays numerical simulations of the model. Observing both theoretical and numerical results, the two equilibrium points' stability is not impacted by the order of fractional derivatives. However, each solution converges more quickly to its stationary state for higher values of the fractional-order derivative. Finally, we would like to say that the acquired numerical results are compatible with our theoretical outcomes.

References

  • [1] M. Drahosova, P. Balco, The analysis of advantages and disadvantages of use of social media in European Union, Proc. Comput. Sci., 109 (2017), 1005-1009.
  • [2] R. Faizi, A. E. Afia, R. Chiheb, Exploring the potential benefits of using social media in education, IJEP, 3(4) (2013), 50-53.
  • [3] A. Simsek, K. Elciyar, T. Kizilhan, A comparative study on social media addiction of high school and university students, Contemporary Edu. Tech., 10(2) (2019), 106-119.
  • [4] S. Zivnuska, J. R. Carlson, D. S. Carlson, R. B. Harris, K. J. Harris, Social media addiction and social media reactions: The implications for job performance, The Journal of Social Psychology, 159(6) (2019), 746-760.
  • [5] C. S. Andreassen, T. Torsheim, G. S. Burnborg, S. Pallesen, Development of a Facebook addiction scale, Psychological Reports, 110(2) (2012), 501–517.
  • [6] J. R. Carlson, S. Zivnuska, D. S. Carlson, R. Harris, K. J. Harris, Social media use in the workplace: A study of dual effects, Journal of Organizational and End User Computing, 28(1) (2016), 15–28.
  • [7] H. T. Alemneh, N. Y. Alemu, Mathematical modeling with optimal control analysis of social media addiction, Infect. Dis. Model., 6 (2021), 405-419.
  • [8] J. Kongson, W. Sudsutad, C. Thaiprayoon, J. Alzabut, C. Tearnbucha, On analysis of a nonlinear fractional system for social media addiction involving Atangana-Balenau-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 356-385.
  • [9] Shutaywi, Meshal, et al. Modeling and analysis of the addiction of social media through fractional calculus, Front. Appl. Math. Stat. 9 (2023), 1210404.
  • [10] I. K. Adu, A. L. Mojeeb, C. Yang, Mathematical model of drinking epidemic, J. Adv. Math. Comput., 22(5) (2017), 1-10.
  • [11] Y. Guo, T. Li, Optimal control and stability analysis of an online game addiction model with two stages, Math. Methods Appl. Sci., 43(7) (2020), 4391-4408.
  • [12] S. H. Ma, H. F. Huo, X. Y. Meng, Modelling alcoholism as a contagious disease: A mathematical model with awareness programs and time delay, Discrete Dyn Nat. Soc., 2015 (2015) Article ID 260195.
  • [13] S. A. Samad, M. T. Islam,S. T. H. Tomal, M., Biswas, Mathematical assessment of the dynamical model of smoking tobacco epidemic in Bangladesh, Int. J. Sci. Manag. Stud., 3(2) (2020), 36-48.
  • [14] E. Demirci, A fractional order model of hepatitis B transmission under the effect of vaccination, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2) (2022), 566-580. https://doi.org/10.31801/cfsuasmas.1103630
  • [15] B. Karaman, The global stability investigation of the mathematical design of a fractional-order HBV infection, J. Appl. Math. Comput., (2022). https://doi.org/10.1007/s12190-022-01721-2.
  • [16] S. S. Askar, G. Dipankar, P. K. Santra, A. A. Elsadany, G. S. Mahapatra, A fractional order SITR mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect, Results Phys., 24 (2021), 104067.
  • [17] I. Owusu-Mensah, L. Akinyemi, B. Oduro, O. S. Iyiola, A fractional order approach to modeling and simulations of the novel COVID-19, Adv. Differ. Equ., 2020 (2020), 683.
  • [18] V. F. Morales-Delgado, J. F. Gomez-Aguilar, M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, Int. J. Electron. Commun., 85 (2018), 61-81.
  • [19] R. Garrappa, Numerical solution of fractional differential equations: A survey and software Tutorial, Mathematics 6(2) (2018), 16.
  • [20] R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simul., 110 (2015), 96-112.
  • [21] H. L. Li, Z. Long, H. Cheng, J. Yao-Lin, T. Zhidong, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435-449.
  • [22] Z. M. Odibat, N. T. Shawaghef, Generalized Taylor’s formula, Appl. Math. Comput., 186 (2007), 286-293.
  • [23] G. M. Mittag-Leffler, Sur l’integrable de Laplace-Abel, Comptes Rendus de l’Academie des Sciences Series II, 136 (1903), 937–939.
  • [24] K. Diethelm, Tha analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
  • [25] I. Podlubny, Fractional differential equations, Academie Press, New York, 1999.
  • [26] K. B. Oldham, J. Spanier, The fractional calculus, New York London, Academic Press, 1974.
  • [27] S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 1-6.
  • [28] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821.
  • [29] C. Castillo Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability. In Mathematical Approaches for Emerging and Remerging Infectious Diseases: An introduction. IMA, Springer, Berlin, 2002.
  • [30] C. V. Leon, Volterra Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75-85.
  • [31] L. C. Cardoso, R. F. Camargo, F. L. P. Santos, J. P. C. Santos, Global stability analysis of a fractional differential system in hepatitis B, Chaos, Solitons and Fractals, 143 (2021), 110619.
  • [32] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719.
  • [33] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., 45(163) (1983), 87-102.
  • [34] L. Galeone, R. Garrappa, On multistep methods for differential equations of fractional order, Mediterr. J. Math., 3 (2006), 565-580.
Year 2025, Volume: 8 Issue: 1, 1 - 10
https://doi.org/10.33434/cams.1559808

Abstract

References

  • [1] M. Drahosova, P. Balco, The analysis of advantages and disadvantages of use of social media in European Union, Proc. Comput. Sci., 109 (2017), 1005-1009.
  • [2] R. Faizi, A. E. Afia, R. Chiheb, Exploring the potential benefits of using social media in education, IJEP, 3(4) (2013), 50-53.
  • [3] A. Simsek, K. Elciyar, T. Kizilhan, A comparative study on social media addiction of high school and university students, Contemporary Edu. Tech., 10(2) (2019), 106-119.
  • [4] S. Zivnuska, J. R. Carlson, D. S. Carlson, R. B. Harris, K. J. Harris, Social media addiction and social media reactions: The implications for job performance, The Journal of Social Psychology, 159(6) (2019), 746-760.
  • [5] C. S. Andreassen, T. Torsheim, G. S. Burnborg, S. Pallesen, Development of a Facebook addiction scale, Psychological Reports, 110(2) (2012), 501–517.
  • [6] J. R. Carlson, S. Zivnuska, D. S. Carlson, R. Harris, K. J. Harris, Social media use in the workplace: A study of dual effects, Journal of Organizational and End User Computing, 28(1) (2016), 15–28.
  • [7] H. T. Alemneh, N. Y. Alemu, Mathematical modeling with optimal control analysis of social media addiction, Infect. Dis. Model., 6 (2021), 405-419.
  • [8] J. Kongson, W. Sudsutad, C. Thaiprayoon, J. Alzabut, C. Tearnbucha, On analysis of a nonlinear fractional system for social media addiction involving Atangana-Balenau-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 356-385.
  • [9] Shutaywi, Meshal, et al. Modeling and analysis of the addiction of social media through fractional calculus, Front. Appl. Math. Stat. 9 (2023), 1210404.
  • [10] I. K. Adu, A. L. Mojeeb, C. Yang, Mathematical model of drinking epidemic, J. Adv. Math. Comput., 22(5) (2017), 1-10.
  • [11] Y. Guo, T. Li, Optimal control and stability analysis of an online game addiction model with two stages, Math. Methods Appl. Sci., 43(7) (2020), 4391-4408.
  • [12] S. H. Ma, H. F. Huo, X. Y. Meng, Modelling alcoholism as a contagious disease: A mathematical model with awareness programs and time delay, Discrete Dyn Nat. Soc., 2015 (2015) Article ID 260195.
  • [13] S. A. Samad, M. T. Islam,S. T. H. Tomal, M., Biswas, Mathematical assessment of the dynamical model of smoking tobacco epidemic in Bangladesh, Int. J. Sci. Manag. Stud., 3(2) (2020), 36-48.
  • [14] E. Demirci, A fractional order model of hepatitis B transmission under the effect of vaccination, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2) (2022), 566-580. https://doi.org/10.31801/cfsuasmas.1103630
  • [15] B. Karaman, The global stability investigation of the mathematical design of a fractional-order HBV infection, J. Appl. Math. Comput., (2022). https://doi.org/10.1007/s12190-022-01721-2.
  • [16] S. S. Askar, G. Dipankar, P. K. Santra, A. A. Elsadany, G. S. Mahapatra, A fractional order SITR mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect, Results Phys., 24 (2021), 104067.
  • [17] I. Owusu-Mensah, L. Akinyemi, B. Oduro, O. S. Iyiola, A fractional order approach to modeling and simulations of the novel COVID-19, Adv. Differ. Equ., 2020 (2020), 683.
  • [18] V. F. Morales-Delgado, J. F. Gomez-Aguilar, M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, Int. J. Electron. Commun., 85 (2018), 61-81.
  • [19] R. Garrappa, Numerical solution of fractional differential equations: A survey and software Tutorial, Mathematics 6(2) (2018), 16.
  • [20] R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simul., 110 (2015), 96-112.
  • [21] H. L. Li, Z. Long, H. Cheng, J. Yao-Lin, T. Zhidong, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435-449.
  • [22] Z. M. Odibat, N. T. Shawaghef, Generalized Taylor’s formula, Appl. Math. Comput., 186 (2007), 286-293.
  • [23] G. M. Mittag-Leffler, Sur l’integrable de Laplace-Abel, Comptes Rendus de l’Academie des Sciences Series II, 136 (1903), 937–939.
  • [24] K. Diethelm, Tha analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
  • [25] I. Podlubny, Fractional differential equations, Academie Press, New York, 1999.
  • [26] K. B. Oldham, J. Spanier, The fractional calculus, New York London, Academic Press, 1974.
  • [27] S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 1-6.
  • [28] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821.
  • [29] C. Castillo Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability. In Mathematical Approaches for Emerging and Remerging Infectious Diseases: An introduction. IMA, Springer, Berlin, 2002.
  • [30] C. V. Leon, Volterra Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75-85.
  • [31] L. C. Cardoso, R. F. Camargo, F. L. P. Santos, J. P. C. Santos, Global stability analysis of a fractional differential system in hepatitis B, Chaos, Solitons and Fractals, 143 (2021), 110619.
  • [32] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719.
  • [33] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., 45(163) (1983), 87-102.
  • [34] L. Galeone, R. Garrappa, On multistep methods for differential equations of fractional order, Mediterr. J. Math., 3 (2006), 565-580.
There are 34 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Applied Mathematics (Other)
Journal Section Articles
Authors

Bahar Karaman 0000-0001-6631-8562

Emrah Karaman 0000-0002-0466-3827

Early Pub Date February 25, 2025
Publication Date
Submission Date October 2, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Karaman, B., & Karaman, E. (2025). The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design. Communications in Advanced Mathematical Sciences, 8(1), 1-10. https://doi.org/10.33434/cams.1559808
AMA Karaman B, Karaman E. The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design. Communications in Advanced Mathematical Sciences. February 2025;8(1):1-10. doi:10.33434/cams.1559808
Chicago Karaman, Bahar, and Emrah Karaman. “The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design”. Communications in Advanced Mathematical Sciences 8, no. 1 (February 2025): 1-10. https://doi.org/10.33434/cams.1559808.
EndNote Karaman B, Karaman E (February 1, 2025) The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design. Communications in Advanced Mathematical Sciences 8 1 1–10.
IEEE B. Karaman and E. Karaman, “The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design”, Communications in Advanced Mathematical Sciences, vol. 8, no. 1, pp. 1–10, 2025, doi: 10.33434/cams.1559808.
ISNAD Karaman, Bahar - Karaman, Emrah. “The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design”. Communications in Advanced Mathematical Sciences 8/1 (February 2025), 1-10. https://doi.org/10.33434/cams.1559808.
JAMA Karaman B, Karaman E. The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design. Communications in Advanced Mathematical Sciences. 2025;8:1–10.
MLA Karaman, Bahar and Emrah Karaman. “The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design”. Communications in Advanced Mathematical Sciences, vol. 8, no. 1, 2025, pp. 1-10, doi:10.33434/cams.1559808.
Vancouver Karaman B, Karaman E. The Mathematical Dynamics of the Caputo Fractional Order Social Media Addiction Design. Communications in Advanced Mathematical Sciences. 2025;8(1):1-10.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..