Research Article
BibTex RIS Cite

Semi MV -Algebras

Year 2013, Volume: 10 Issue: 1, - , 01.05.2013

Abstract

In this paper we introduced the notions of fuzzy point MV -algebra and fuzzy
point MV -ideals and discuss the relationship between them and the ideals of MV -algebra.
Also we study the product of two fuzzy point MV -algebras.

References

  • [1] A. B. Saeid, L. Torkzadeh, Fuzzy point hyper BCK-algebras, Indian Journal of Science and Technology 3 (2010), 515–522.
  • [2] C. C. Chang, Algebraic analysis of many valued logic, Transactions of the American Mathematical Society 88 (1958), 467–490.
  • [3] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, Boston 2000.
  • [4] A. Di Nola, Algebraic analysis of Lukasiewicz logic, European Summer School in Logic, Language and Information 1999 (ESSLLI’99) Utrecht, The Netherlands, (1999), 1-10.
  • [5] R. S. Grigolia, An algebraic analysis of Lukasiewicz-Tarski n-valued logical systems, In: R. W´ojcicki, G. Malinowski (Eds.) Selected Papers on Lukasiewicz Sentential Calculus, Ossolineum, Wroc law (1977), 81–92.
  • [6] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980), 571–599.
  • [7] W. B. V. Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, NM 2003.
  • [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

Year 2013, Volume: 10 Issue: 1, - , 01.05.2013

Abstract

References

  • [1] A. B. Saeid, L. Torkzadeh, Fuzzy point hyper BCK-algebras, Indian Journal of Science and Technology 3 (2010), 515–522.
  • [2] C. C. Chang, Algebraic analysis of many valued logic, Transactions of the American Mathematical Society 88 (1958), 467–490.
  • [3] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, Boston 2000.
  • [4] A. Di Nola, Algebraic analysis of Lukasiewicz logic, European Summer School in Logic, Language and Information 1999 (ESSLLI’99) Utrecht, The Netherlands, (1999), 1-10.
  • [5] R. S. Grigolia, An algebraic analysis of Lukasiewicz-Tarski n-valued logical systems, In: R. W´ojcicki, G. Malinowski (Eds.) Selected Papers on Lukasiewicz Sentential Calculus, Ossolineum, Wroc law (1977), 81–92.
  • [6] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980), 571–599.
  • [7] W. B. V. Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, NM 2003.
  • [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
There are 8 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

M. Musa Hasankhani This is me

A. Borumand Saeid

Publication Date May 1, 2013
Published in Issue Year 2013 Volume: 10 Issue: 1

Cite

APA Hasankhani, M. M., & Saeid, A. B. (2013). Semi MV -Algebras. Cankaya University Journal of Science and Engineering, 10(1).
AMA Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. May 2013;10(1).
Chicago Hasankhani, M. Musa, and A. Borumand Saeid. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering 10, no. 1 (May 2013).
EndNote Hasankhani MM, Saeid AB (May 1, 2013) Semi MV -Algebras. Cankaya University Journal of Science and Engineering 10 1
IEEE M. M. Hasankhani and A. B. Saeid, “Semi MV -Algebras”, CUJSE, vol. 10, no. 1, 2013.
ISNAD Hasankhani, M. Musa - Saeid, A. Borumand. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering 10/1 (May2013).
JAMA Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. 2013;10.
MLA Hasankhani, M. Musa and A. Borumand Saeid. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering, vol. 10, no. 1, 2013.
Vancouver Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. 2013;10(1).