Araştırma Makalesi
BibTex RIS Kaynak Göster

Semi MV -Algebras

Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

In this paper we introduced the notions of fuzzy point MV -algebra and fuzzy
point MV -ideals and discuss the relationship between them and the ideals of MV -algebra.
Also we study the product of two fuzzy point MV -algebras.

Kaynakça

  • [1] A. B. Saeid, L. Torkzadeh, Fuzzy point hyper BCK-algebras, Indian Journal of Science and Technology 3 (2010), 515–522.
  • [2] C. C. Chang, Algebraic analysis of many valued logic, Transactions of the American Mathematical Society 88 (1958), 467–490.
  • [3] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, Boston 2000.
  • [4] A. Di Nola, Algebraic analysis of Lukasiewicz logic, European Summer School in Logic, Language and Information 1999 (ESSLLI’99) Utrecht, The Netherlands, (1999), 1-10.
  • [5] R. S. Grigolia, An algebraic analysis of Lukasiewicz-Tarski n-valued logical systems, In: R. W´ojcicki, G. Malinowski (Eds.) Selected Papers on Lukasiewicz Sentential Calculus, Ossolineum, Wroc law (1977), 81–92.
  • [6] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980), 571–599.
  • [7] W. B. V. Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, NM 2003.
  • [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

Kaynakça

  • [1] A. B. Saeid, L. Torkzadeh, Fuzzy point hyper BCK-algebras, Indian Journal of Science and Technology 3 (2010), 515–522.
  • [2] C. C. Chang, Algebraic analysis of many valued logic, Transactions of the American Mathematical Society 88 (1958), 467–490.
  • [3] R. L. O. Cignoli, I. M. L. D’Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic, Dordrecht, Boston 2000.
  • [4] A. Di Nola, Algebraic analysis of Lukasiewicz logic, European Summer School in Logic, Language and Information 1999 (ESSLLI’99) Utrecht, The Netherlands, (1999), 1-10.
  • [5] R. S. Grigolia, An algebraic analysis of Lukasiewicz-Tarski n-valued logical systems, In: R. W´ojcicki, G. Malinowski (Eds.) Selected Papers on Lukasiewicz Sentential Calculus, Ossolineum, Wroc law (1977), 81–92.
  • [6] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications 76 (1980), 571–599.
  • [7] W. B. V. Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, NM 2003.
  • [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

M. Musa Hasankhani Bu kişi benim

A. Borumand Saeid

Yayımlanma Tarihi 1 Mayıs 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 10 Sayı: 1

Kaynak Göster

APA Hasankhani, M. M., & Saeid, A. B. (2013). Semi MV -Algebras. Cankaya University Journal of Science and Engineering, 10(1).
AMA Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. Mayıs 2013;10(1).
Chicago Hasankhani, M. Musa, ve A. Borumand Saeid. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering 10, sy. 1 (Mayıs 2013).
EndNote Hasankhani MM, Saeid AB (01 Mayıs 2013) Semi MV -Algebras. Cankaya University Journal of Science and Engineering 10 1
IEEE M. M. Hasankhani ve A. B. Saeid, “Semi MV -Algebras”, CUJSE, c. 10, sy. 1, 2013.
ISNAD Hasankhani, M. Musa - Saeid, A. Borumand. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering 10/1 (Mayıs 2013).
JAMA Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. 2013;10.
MLA Hasankhani, M. Musa ve A. Borumand Saeid. “Semi MV -Algebras”. Cankaya University Journal of Science and Engineering, c. 10, sy. 1, 2013.
Vancouver Hasankhani MM, Saeid AB. Semi MV -Algebras. CUJSE. 2013;10(1).