Research Article
BibTex RIS Cite
Year 2018, Volume: 15 Issue: 2, 63 - 75, 30.11.2018

Abstract

References

  • [1] G. R. Van der Hoff, P. van Zoonen, Trace analysis of pesticides by gas chromatography, Journal of Chromatography A, 843(1), (1999), 301-322.
  • [2] F. E. Ahmed, Analyses of pesticides and their metabolites in foods and drinks, TrAC - Trends in Analytical Chemistry, 20(11), (2001), 649–661.
  • [3] J. Cooper, H. Dobson, September. The benefits of pesticides to mankind and the environment, Crop Protection, 26(9), (2007), 1337-1348.
  • [4] M. S. Butchiram, K. S. Tilak, P. W. Raju, Studies on histopathological changes in the gill, liver and kidney of Channa punctatus (Bloch) exposed to alachlor, Journal of Environmental Biology, 30(2), (2009), 303–306.
  • [5] J. M. Pérez-Iglesias, S. Soloneski, N. Nikoloff, G. S. Natale, M. L. Larramendy, Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae), Ecotoxicology and Environmental Safety, 119, (2015), 15-24.
  • [6] J. P. Myers, M. N. Antoniou, B. Blumberg, L. Carroll, T. Colborn, L. G. Everett, ... , L. N. Vandenberg, Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement, Environmental Health, 15(1), (2016), 19.
  • [7] M. Ehrsam, S. A. Knutie, J. R. Rohr, The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues, Environmental Toxicology and Chemistry, 35(9), (2016), 2239-2244.
  • [8] D. B. Lindenmayer, J. Wood, C. MacGregor, R. J. Hobbs, J. A. Catford, Non‐target impacts of weed control on birds, mammals, and reptiles, Ecosphere, 8(5), (2017).
  • [9] J. Stanley, G. Preetha, Pesticide toxicity to non-target organisms, Springer, (2016), 502 p.
  • [10] R. J. Henning, G. T. Johnson, J. P. Coyle, R. D.Harbison, Acrolein Can Cause Cardiovascular Disease: A Review, Cardiovascular Toxicology, 17(3), (2017), 227-236.
  • [11] L. L. C. Alligare, Magnacide H herbicide application and safety manual. (2013), (URL:http://www.alligarellc.com/assets/pdf/MAGNACIDE_H_Manual.pdf). (Date accessed: April 2018).
  • [12] D. Shaner, Herbicide handbook. 10th Edition, Weed Science Society of America, Lawrence, (2014), 513 p.
  • [13] K. D. King, Acrolein : Environmental fate and ecotoxicology, (2016), (URL: http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/acrolein.pdf). (Date accessed: April 2018).
  • [14] K. Uchida, M. Kanematsu, Y. Morimitsu, T. Osawa, N. Noguchi, E. Niki, Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins, The Journal of Biological Chemistry, 273, (1998), 16058–16066.
  • [15] M. K. Mohammad, D. Avila, J. Zhang, S. Barve, G. Arteel, C. McClain, S. Joshi-Barve, Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress, Toxicology and Applied Pharmacology, 265(1), (2012), 73–82.
  • [16] J. P. Kehrer, S. S. Biswal, The molecular effects of acrolein, Toxicological Sciences, 57(1), (2000), 6–15.
  • [17] M. J. Randall, M. Hristova, A. Van Der Vliet, Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?, FEBS Letters, 587(23), (2013), 3808–3814.
  • [18] H. Esterbauer, R. J. Schaur, H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radical Biology and Medicine, 11, (1991), 81–128.
  • [19] L. Sun, C. Luo, J. Long, D. Wei, J. Liu, Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria, Mitochondrion, 6(3), (2006), 136-142.
  • [20] H. Akiyoshi, A. Inoue, Comparative histological study of teleost livers in relation to phylogeny, Zoological Science, 21(8), (2004), 841–850.
  • [21] C. F. Sales, R. F. Silva, M. G. C. Amaral, F. F. T. Domingos, R. I. M. A. Ribeiro, R. G. Thomé, H. B. Santos, Comparative histology in the liver and spleen of three species of freshwater teleost, Neotropical Ichthyology, 15(1), (2017).
  • [22] S. Arman, S. I. Üçüncü, Histopathological changes in the gill and kidney tissues of Carassius auratus exposed to acrolein, Journal of Environmental Biology, 38(2), (2017), 263.
  • [23] A. Figueiredo-Fernandes, A. Fontaínhas-Fernandes, E. Rocha, M. A. Reis-Henriques, The effect of paraquat on hepatic EROD activity, liver, and gonadal histology in males and females of Nile tilapia, Oreochromis niloticus, exposed at different temperatures, Archives of Environmental Contamination and Toxicology, 51(4), (2006), 626–632.
  • [24] M. Crestani, C. Menezes, L. Glusczak, D. dos Santos Miron, R. Spanevello, A. Silveira, … ,V. L. Loro, Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern, Chemosphere, 67(11), (2007), 2305–2311.
  • [25] P. Peebua, M. Kruatrachue, P. Pokethitiyook, S. Singhakaew, Histopathological alterations of Nile tilapia, Oreochromis niloticus in acute and subchronic alachlor exposure, Journal of Environmental Biology, 29(3), (2008), 325–331.
  • [26] E.Ortiz-Ordoñez, E. Uría-Galicia, R. A. Ruiz-Picos, A. G. Sánchez Duran, Y. Hernández Trejo, J. E. Sedeño-Díaz, E. López-López, Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis, Archives of Environmental Contamination and Toxicology, 61(3), (2011), 443–452.
  • [27] M. Mela, I. C. Guiloski, H. B. Doria, M. A. F. Randi, C. A. De Oliveira Ribeiro, L. Pereira, …, H. C. Silva de Assis, Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen), Ecotoxicology and Environmental Safety, , 93, (2013a), 13–21.
  • [28] A. F. Vigário, S. M. T. Sabóia-Morais, Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara, Pesquisa Veterinaria Brasileira, , 34(6), (2014), 523–528.
  • [29] N. K. Nešković, V. Poleksić, I. Elezovíc, V. Karan, M. Budimir, Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L., Bulletin of Environmental Contamination and Toxicology, 56(2), (1996), 295–302.
  • [30] W. Jiraungkoorskul, E. S. Upatham, M. Kruatrachue, S. Sahaphong, S. Vichasri-Grams, P. Pokethitiyook, Biochemical and histopathological effects of glyphosate herbicide on nile tilapia (Oreochromis niloticus), Environmental Toxicology, 18(4), (2003), 260–267.
  • [31] S. O. Ayoola, Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile, African Journal of Agricultural Research, 3(12), (2008), 825–834.
  • [32] V. do C. Langiano, C. B. R. Martinez, Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus, Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 147(2), (2008), 222–231.
  • [33] N. S. Shiogiri, M. G. Paulino, S. P. Carraschi, F. G. Baraldi, C. da Cruz, M. N. Fernandes, Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus, Environmental Toxicology and Pharmacology, 34(2), (2012), 388–396.
  • [34] S. Kakar, P. S. Kamath, L. J. Burgart, Sinusoidal dilatation and congestion in liver biopsy: is it always due to venous outflow impairment?, Archives of Pathology and Laboratory Medicine, 128(8), (2004), 901–904.
  • [35] G. Brancatelli, A. Furlan, A. Calandra, M. D. Burgio, Hepatic sinusoidal dilatation, Abdominal Radiology, (2018), 1-12.
  • [36] W. H. Gingerich, Hepatic toxicology of fishes, Aquatic Toxicology, (1982), 1:55-105.
  • [37] A. M. Abdel-Moneim, M.A. Al-Kahtani, O. M. Elmenshawy, Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia, Chemosphere, 88(8), (2012), 1028–1035.
  • [38] U. Del Monte, Swelling of hepatocytes injured by oxidative stress suggests pathological changes related to macromolecular crowding, Medical Hypotheses, 64(4), (2005), 818-825.
  • [39] M. A. K. Abdelhalim, B. M. Jarrar, Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver, Lipids in Health and Disease, 10(1), (2011), 166.
  • [40] M. Pacheco, M. A. Santos, Biotransformation, genotoxic and histopath- ological effects of environmental contaminants in European eel (Anguilla anguilla L.), Ecotoxicology and Environmental Safety, 53, (2002), 331–347.
  • [41] M. Mela, I.,C. Guiloski, H.,B. Doria, I.,S. Rabitto, C.,A. Silva, A. C. Maraschi, V. Prodocimo, C. A. Freire, M. A. F. Randi, C. A. Oliveira Ribeiro, H. C. Silva de Assis, Risks of waterborne copper exposure to a cultivated freshwater neotropical catfish (Rhamdia quelen), Ecotoxicology and Environmental Safety, 88, (2013b), 108–116.
  • [42] A. Avci, M. Kaàmaz, I. Durak, Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry, Ecotoxicology and Environmental Safety, 460, (2005), 101–105.
  • [43] X. Zhu, L. Zhu, Y. Lang, Y. Chen, Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induces by chronic exposure to sublethal fullerene aggregates, Environmental Toxicology and Chemistry, 27(9), (2008), 1979–1985.

Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758)

Year 2018, Volume: 15 Issue: 2, 63 - 75, 30.11.2018

Abstract

The present study was conducted to examine the
potential histopathological changes caused by a herbicide, acrolein, in the
liver of
Carassius auratus (goldfish).
Fish were exposed to 1, 5 and 25 µg/L acrolein for 96 h. Liver tissues were
removed, fixed with Bouin’s fluid and embedded in paraffin. 5 µm serial
sections were stained with hematoxylin eosin and the samples were investigated
by light microscopy. Acrolein treatment gave rise to sinusoidal dilatation and
congestion, vacuolar degeneration, hemorrhage, lymphocyte infiltration,
presence of enlarged melanomacrophagic centers, cloudy swelling,
nucleolus
absence,
and necrosis. These results are important for paying attention to
acrolein usage limits and its contamination in the aquatic environment.


References

  • [1] G. R. Van der Hoff, P. van Zoonen, Trace analysis of pesticides by gas chromatography, Journal of Chromatography A, 843(1), (1999), 301-322.
  • [2] F. E. Ahmed, Analyses of pesticides and their metabolites in foods and drinks, TrAC - Trends in Analytical Chemistry, 20(11), (2001), 649–661.
  • [3] J. Cooper, H. Dobson, September. The benefits of pesticides to mankind and the environment, Crop Protection, 26(9), (2007), 1337-1348.
  • [4] M. S. Butchiram, K. S. Tilak, P. W. Raju, Studies on histopathological changes in the gill, liver and kidney of Channa punctatus (Bloch) exposed to alachlor, Journal of Environmental Biology, 30(2), (2009), 303–306.
  • [5] J. M. Pérez-Iglesias, S. Soloneski, N. Nikoloff, G. S. Natale, M. L. Larramendy, Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae), Ecotoxicology and Environmental Safety, 119, (2015), 15-24.
  • [6] J. P. Myers, M. N. Antoniou, B. Blumberg, L. Carroll, T. Colborn, L. G. Everett, ... , L. N. Vandenberg, Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement, Environmental Health, 15(1), (2016), 19.
  • [7] M. Ehrsam, S. A. Knutie, J. R. Rohr, The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues, Environmental Toxicology and Chemistry, 35(9), (2016), 2239-2244.
  • [8] D. B. Lindenmayer, J. Wood, C. MacGregor, R. J. Hobbs, J. A. Catford, Non‐target impacts of weed control on birds, mammals, and reptiles, Ecosphere, 8(5), (2017).
  • [9] J. Stanley, G. Preetha, Pesticide toxicity to non-target organisms, Springer, (2016), 502 p.
  • [10] R. J. Henning, G. T. Johnson, J. P. Coyle, R. D.Harbison, Acrolein Can Cause Cardiovascular Disease: A Review, Cardiovascular Toxicology, 17(3), (2017), 227-236.
  • [11] L. L. C. Alligare, Magnacide H herbicide application and safety manual. (2013), (URL:http://www.alligarellc.com/assets/pdf/MAGNACIDE_H_Manual.pdf). (Date accessed: April 2018).
  • [12] D. Shaner, Herbicide handbook. 10th Edition, Weed Science Society of America, Lawrence, (2014), 513 p.
  • [13] K. D. King, Acrolein : Environmental fate and ecotoxicology, (2016), (URL: http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/acrolein.pdf). (Date accessed: April 2018).
  • [14] K. Uchida, M. Kanematsu, Y. Morimitsu, T. Osawa, N. Noguchi, E. Niki, Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins, The Journal of Biological Chemistry, 273, (1998), 16058–16066.
  • [15] M. K. Mohammad, D. Avila, J. Zhang, S. Barve, G. Arteel, C. McClain, S. Joshi-Barve, Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress, Toxicology and Applied Pharmacology, 265(1), (2012), 73–82.
  • [16] J. P. Kehrer, S. S. Biswal, The molecular effects of acrolein, Toxicological Sciences, 57(1), (2000), 6–15.
  • [17] M. J. Randall, M. Hristova, A. Van Der Vliet, Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling?, FEBS Letters, 587(23), (2013), 3808–3814.
  • [18] H. Esterbauer, R. J. Schaur, H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radical Biology and Medicine, 11, (1991), 81–128.
  • [19] L. Sun, C. Luo, J. Long, D. Wei, J. Liu, Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria, Mitochondrion, 6(3), (2006), 136-142.
  • [20] H. Akiyoshi, A. Inoue, Comparative histological study of teleost livers in relation to phylogeny, Zoological Science, 21(8), (2004), 841–850.
  • [21] C. F. Sales, R. F. Silva, M. G. C. Amaral, F. F. T. Domingos, R. I. M. A. Ribeiro, R. G. Thomé, H. B. Santos, Comparative histology in the liver and spleen of three species of freshwater teleost, Neotropical Ichthyology, 15(1), (2017).
  • [22] S. Arman, S. I. Üçüncü, Histopathological changes in the gill and kidney tissues of Carassius auratus exposed to acrolein, Journal of Environmental Biology, 38(2), (2017), 263.
  • [23] A. Figueiredo-Fernandes, A. Fontaínhas-Fernandes, E. Rocha, M. A. Reis-Henriques, The effect of paraquat on hepatic EROD activity, liver, and gonadal histology in males and females of Nile tilapia, Oreochromis niloticus, exposed at different temperatures, Archives of Environmental Contamination and Toxicology, 51(4), (2006), 626–632.
  • [24] M. Crestani, C. Menezes, L. Glusczak, D. dos Santos Miron, R. Spanevello, A. Silveira, … ,V. L. Loro, Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern, Chemosphere, 67(11), (2007), 2305–2311.
  • [25] P. Peebua, M. Kruatrachue, P. Pokethitiyook, S. Singhakaew, Histopathological alterations of Nile tilapia, Oreochromis niloticus in acute and subchronic alachlor exposure, Journal of Environmental Biology, 29(3), (2008), 325–331.
  • [26] E.Ortiz-Ordoñez, E. Uría-Galicia, R. A. Ruiz-Picos, A. G. Sánchez Duran, Y. Hernández Trejo, J. E. Sedeño-Díaz, E. López-López, Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis, Archives of Environmental Contamination and Toxicology, 61(3), (2011), 443–452.
  • [27] M. Mela, I. C. Guiloski, H. B. Doria, M. A. F. Randi, C. A. De Oliveira Ribeiro, L. Pereira, …, H. C. Silva de Assis, Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen), Ecotoxicology and Environmental Safety, , 93, (2013a), 13–21.
  • [28] A. F. Vigário, S. M. T. Sabóia-Morais, Effects of the 2,4-D herbicide on gills epithelia and liver of the fish Poecilia vivipara, Pesquisa Veterinaria Brasileira, , 34(6), (2014), 523–528.
  • [29] N. K. Nešković, V. Poleksić, I. Elezovíc, V. Karan, M. Budimir, Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L., Bulletin of Environmental Contamination and Toxicology, 56(2), (1996), 295–302.
  • [30] W. Jiraungkoorskul, E. S. Upatham, M. Kruatrachue, S. Sahaphong, S. Vichasri-Grams, P. Pokethitiyook, Biochemical and histopathological effects of glyphosate herbicide on nile tilapia (Oreochromis niloticus), Environmental Toxicology, 18(4), (2003), 260–267.
  • [31] S. O. Ayoola, Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile, African Journal of Agricultural Research, 3(12), (2008), 825–834.
  • [32] V. do C. Langiano, C. B. R. Martinez, Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus, Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 147(2), (2008), 222–231.
  • [33] N. S. Shiogiri, M. G. Paulino, S. P. Carraschi, F. G. Baraldi, C. da Cruz, M. N. Fernandes, Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus, Environmental Toxicology and Pharmacology, 34(2), (2012), 388–396.
  • [34] S. Kakar, P. S. Kamath, L. J. Burgart, Sinusoidal dilatation and congestion in liver biopsy: is it always due to venous outflow impairment?, Archives of Pathology and Laboratory Medicine, 128(8), (2004), 901–904.
  • [35] G. Brancatelli, A. Furlan, A. Calandra, M. D. Burgio, Hepatic sinusoidal dilatation, Abdominal Radiology, (2018), 1-12.
  • [36] W. H. Gingerich, Hepatic toxicology of fishes, Aquatic Toxicology, (1982), 1:55-105.
  • [37] A. M. Abdel-Moneim, M.A. Al-Kahtani, O. M. Elmenshawy, Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia, Chemosphere, 88(8), (2012), 1028–1035.
  • [38] U. Del Monte, Swelling of hepatocytes injured by oxidative stress suggests pathological changes related to macromolecular crowding, Medical Hypotheses, 64(4), (2005), 818-825.
  • [39] M. A. K. Abdelhalim, B. M. Jarrar, Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver, Lipids in Health and Disease, 10(1), (2011), 166.
  • [40] M. Pacheco, M. A. Santos, Biotransformation, genotoxic and histopath- ological effects of environmental contaminants in European eel (Anguilla anguilla L.), Ecotoxicology and Environmental Safety, 53, (2002), 331–347.
  • [41] M. Mela, I.,C. Guiloski, H.,B. Doria, I.,S. Rabitto, C.,A. Silva, A. C. Maraschi, V. Prodocimo, C. A. Freire, M. A. F. Randi, C. A. Oliveira Ribeiro, H. C. Silva de Assis, Risks of waterborne copper exposure to a cultivated freshwater neotropical catfish (Rhamdia quelen), Ecotoxicology and Environmental Safety, 88, (2013b), 108–116.
  • [42] A. Avci, M. Kaàmaz, I. Durak, Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry, Ecotoxicology and Environmental Safety, 460, (2005), 101–105.
  • [43] X. Zhu, L. Zhu, Y. Lang, Y. Chen, Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induces by chronic exposure to sublethal fullerene aggregates, Environmental Toxicology and Chemistry, 27(9), (2008), 1979–1985.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sezgi Arman

Sema İşisağ Üçüncü This is me

Publication Date November 30, 2018
Published in Issue Year 2018 Volume: 15 Issue: 2

Cite

APA Arman, S., & İşisağ Üçüncü, S. (2018). Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758). Cankaya University Journal of Science and Engineering, 15(2), 63-75.
AMA Arman S, İşisağ Üçüncü S. Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758). CUJSE. November 2018;15(2):63-75.
Chicago Arman, Sezgi, and Sema İşisağ Üçüncü. “Acrolein-Induced Histopathological Alterations in the Liver of Goldfish, Carassius Auratus (Linnaeus, 1758)”. Cankaya University Journal of Science and Engineering 15, no. 2 (November 2018): 63-75.
EndNote Arman S, İşisağ Üçüncü S (November 1, 2018) Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758). Cankaya University Journal of Science and Engineering 15 2 63–75.
IEEE S. Arman and S. İşisağ Üçüncü, “Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758)”, CUJSE, vol. 15, no. 2, pp. 63–75, 2018.
ISNAD Arman, Sezgi - İşisağ Üçüncü, Sema. “Acrolein-Induced Histopathological Alterations in the Liver of Goldfish, Carassius Auratus (Linnaeus, 1758)”. Cankaya University Journal of Science and Engineering 15/2 (November 2018), 63-75.
JAMA Arman S, İşisağ Üçüncü S. Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758). CUJSE. 2018;15:63–75.
MLA Arman, Sezgi and Sema İşisağ Üçüncü. “Acrolein-Induced Histopathological Alterations in the Liver of Goldfish, Carassius Auratus (Linnaeus, 1758)”. Cankaya University Journal of Science and Engineering, vol. 15, no. 2, 2018, pp. 63-75.
Vancouver Arman S, İşisağ Üçüncü S. Acrolein-induced histopathological alterations in the liver of goldfish, Carassius auratus (Linnaeus, 1758). CUJSE. 2018;15(2):63-75.