| | | |

## Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method

#### Morufu Oyedunsi OLAYİWOLA [1] , A. F. ADEBISI [2] , Y. S. AROWOLO [3]

In this paper, we presented an efficient numerical method of solving Volterra integro-differential equations by applying Legendre as basis function for the solution of initial value problem of Integro-differential equations. We assumed appropriate solutions in terms of Legendre polynomial as basis function which was substituted into the class of integro-differential equations considered. This transformed the integro-differential equations and the given initial conditions into matrix equations. By collocating at point corresponding to N- systems of equations, the results obtained for some numerical examples justified the efficiency and reliability of the proposed method.
Collocation method, Legendre polynomial basis function, Volterra Integro-differential equations
• [1] Volterra V. Theory of Functionals and of Integral and Integro-differential Equations, Dover Publications,(2005).
• [2] Maleknejad, K. and Agazadeh, N., Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Compu., 161, (2005), 915-922.
• [3] Brunner, H., The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Appl. Math. Compu., 45, (1985), 417-437.
• [4] Brunner, H., On the Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations by collocation Methods, SIAM Jour. Numer. Anal., 27, (1990), 987-1000.
• [5] Maleknejad, K. Sohrabi, S. and Rostami, Y., Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polyomials, Appl. Math. Compu., 188,(2007), 123-128.
• [6] Rabbani, M., Maleknejad, K. and Aghazadeh, N., Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Appl.Math. Compu., 187, (2007), 1143-1146.
• [7] Maleknejad, K., Hashemizadeh, E. and Ezzati, R., A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation, Commu. Nonlinear Sci. Num. Simul., 16, (2011), 647-655.
• [8] Wazwaz, A., Two methods for solving integral equations, Appl. Math. Compu., 77, (1996), 79-89.
• [9] Wazwaz, A., Linear and Nonlinear Integral Equations: Methods and Applications, Higher education press, (2011), Springer.
• [10] Rashed, M., Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations, Appl. Math. Compu., 151, (2004), 869-878.
• [11] Hashim, I. Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, Jour. Compu. Appl. Math., 193, (2006), 658-664.
• [12] Maleknejad, K. and Mahmoudi, Y., Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations, Appl. Math. Compu., 145, (2003), 641-653.
• [13] Maleknejad, K. Mirzaee, F. and Abbasbandy, S. Solving linear integro-differential equations system by using rationalized Haar function method, Appl. Math. Compu., 155, (2005), 317- 328.
• [14] Darnaia, P. and Ebadian, A., A method for the numerical solution of the integro-differential equations, Appl. Math. Compu., 188, (2007), 657-668.
• [15] Sweilam, N., Fourth order integro-differential equations using variational iteration method, Compu. Math. Appl., 54, (2007), 1086-1091.
• [16] Hosseini, S. and Shahmorad, S., Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation, Appl. Math. Compu., 136, (2003), 559-570.
• [17] Olayiwola, M.O, Solutions to Emden Fowler Type Equations by Variational Iteration Method. Cankaya University,Journal of Science and Engineering.16(2), (2019), 001-009.
• [18] Cardone, A, Conte, D.D’Ambrosio R. and Parameter, B., Collocation Methods for Volterra Integral and Integro-Differential Equations: A Review, Axioms, 7, (2018), 45-61; doi:10.3390/axioms7030045.
• [19] Taiwo, O.A and Adebisi, A.F. Multiple Perturbed Collocation Tau method for special class of higher order linear Fredholm and Volterra Integro-differential Equations. Pro-Journal of Physical Science Research (PPSR). 2(3), (2014), 13-22.
• [20] Adewunmi, A.O. Tau Homotopy and embedded Perturbed integral Collocation Methods for Solving Boundary Valued Problems.Comm.. B. Nonlinear Sci. Numerical Simulation. 14, (2014), 3530-3536.The Numerical Solution of Second Order, BVP, J of NAMP, 10, 293-298.
Birincil Dil en Mühendislik bahar Makaleler Orcid: 0000-0001-6101-1203Yazar: Morufu Oyedunsi OLAYİWOLA (Sorumlu Yazar)Kurum: Osun State University, Osogbo, NigeriaÜlke: Nigeria Yazar: A. F. ADEBISI Kurum: Department of Mathematical Sciences, Faculty of Basic and Applied Sciences, Osun State UniversityÜlke: Nigeria Yazar: Y. S. AROWOLO Kurum: Department of Mathematical Sciences, Faculty of Basic and Applied Sciences, Osun State UniversityÜlke: Nigeria Yayımlanma Tarihi : 1 Mayıs 2020
 Bibtex @araştırma makalesi { cankujse690396, journal = {Cankaya University Journal of Science and Engineering}, issn = {1309-6788}, eissn = {2564-7954}, address = {}, publisher = {Çankaya Üniversitesi}, year = {2020}, volume = {17}, pages = {41 - 51}, doi = {}, title = {Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method}, key = {cite}, author = {OLAYİWOLA, Morufu Oyedunsi and ADEBISI, A. F. and AROWOLO, Y. S.} } APA OLAYİWOLA, M , ADEBISI, A , AROWOLO, Y . (2020). Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method. Cankaya University Journal of Science and Engineering , 17 (1) , 41-51 . Retrieved from https://dergipark.org.tr/tr/pub/cankujse/issue/54098/690396 MLA OLAYİWOLA, M , ADEBISI, A , AROWOLO, Y . "Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method". Cankaya University Journal of Science and Engineering 17 (2020 ): 41-51 Chicago OLAYİWOLA, M , ADEBISI, A , AROWOLO, Y . "Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method". Cankaya University Journal of Science and Engineering 17 (2020 ): 41-51 RIS TY - JOUR T1 - Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method AU - Morufu Oyedunsi OLAYİWOLA , A. F. ADEBISI , Y. S. AROWOLO Y1 - 2020 PY - 2020 N1 - DO - T2 - Cankaya University Journal of Science and Engineering JF - Journal JO - JOR SP - 41 EP - 51 VL - 17 IS - 1 SN - 1309-6788-2564-7954 M3 - UR - Y2 - 2020 ER - EndNote %0 Çankaya Üniversitesi Bilim ve Mühendislik Dergisi Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method %A Morufu Oyedunsi OLAYİWOLA , A. F. ADEBISI , Y. S. AROWOLO %T Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method %D 2020 %J Cankaya University Journal of Science and Engineering %P 1309-6788-2564-7954 %V 17 %N 1 %R %U ISNAD OLAYİWOLA, Morufu Oyedunsi , ADEBISI, A. F. , AROWOLO, Y. S. . "Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method". Cankaya University Journal of Science and Engineering 17 / 1 (Mayıs 2020): 41-51 . AMA OLAYİWOLA M , ADEBISI A , AROWOLO Y . Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method. Cankaya University Journal of Science and Engineering. 2020; 17(1): 41-51. Vancouver OLAYİWOLA M , ADEBISI A , AROWOLO Y . Application of Legendre Polynomial Basis Function on the Solution of Volterra Integro-Differential Equations Using Collocation Method. Cankaya University Journal of Science and Engineering. 2020; 17(1): 51-41.

Makalenin Yazarları
[2]
[3]