Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 14 Sayı: 4, 399 - 404, 28.12.2018
https://doi.org/10.18466/cbayarfbe.410546

Öz

Kaynakça

  • 1. Strid, AW, Chow, WS, Anderson, JM, UV-B damage and protection at the molecular level in plants, Photosynthesis Research, 1994, 39, 475-489.
  • 2. Riegger, L, Robinson, D, Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antartica. Marine Ecology Progress Series, 1997 160, 13-25.
  • 3. Bouchereau, A, Aziz, A, Larher, F, Martin-Tanguy, J, Polyamines and environmental challenges, recent development, Plant Science, 1999 140, 103–125.
  • 4. Kramer, GF, Norman, HA, Krizek, DT, Mirecki, RM, Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber, Phytochemistry, 1991, 30, 2101–2108.
  • 5. Kotzabasis, K, Fotinou, C, Roubelakis-Angelakis, KA, Ghanotakis, D, Polyamines in the photosynthetic apparatus, Photosystem II highly resolved subcomplexes are enriched in spermine, Photosynthesis Research, 1993, 38, 83–88.
  • 6. Bates, LS, Waldren, RP, Tear, ID, Rapid determination of free proline for water-stress studies, Plant Soil, 1973, 39, 205–207.
  • 7. Unal, D, Tuney, I, Sukatar, A, The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata, Journal of Photochemistry and Photobiology B, 2008, 90, 64-68.
  • 8. Lütz, C, Navakoudis, E, Seidlitz, HK, Kotzabasis, K, Simulated solar irradiation with enhanced UV-B adjust plastid-and thylakoid-associated polyamine changes for UV-B protection, Biochimica et Biophysica Acta-Bioenergetics, 2005, 1710, 24-33.
  • 9. Demir, Y, Growth and proline content of germinating wheat genotypes under ultraviolet light, Turkish Journal of Botany, 2000, 24, 67-70.
  • 10. Alia, P, Mohanty, P, Matysik, J, Effect of proline on the production of singlet oxygen, Amino Acids, 2001, 21, 195-200.
  • 11. Smirnoff, N, Cumbes, QJ, Hydroxyl radical scavenging activity of compatible solute, Phytochemistry, 1989, 28, 1057–1060.
  • 12. Wang, X, Shi, G, Xu, Q, Hu, J, Exogenous polyamines enhance copper tolerance of Nymphoides peltatum, Journal of Plant Physiology, 2007, 164, 1062-70.
  • 13. Duan, JJ, Li, J, Guo, SR, Kang, YY, Exogenous Spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance, Journal of Plant Physiology, 2008, 165, 1620-35.
  • 14. Aziz, A, Martin-Tanguy, J, Larher, F, Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodiumchloride, Physiologia Plantarum, 1998, 104, 195-202.
  • 15. Tanou, G, Ziogas, V, Belghazi, M, Christou, A, Filippou, P, Job, D, Fotopoulos, V, Molassiotis, A, Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress, Plant Cell and Environment, 2014, 37,864-885.
  • 16. Kumar, SG, Mattareddy, A, Sudhakar, C, NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Marus alba L.) with contrasting salt tolerance, Plant Science, 2003, 165, 1245-1251.
  • 17. Hoerter, ID, Arnold, AA, Kuczynska, DA, Shibuya, A, Ward, CS, Sauer, MG, Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli, Journal of Journal of Photochemistry and Photobiology B, 2005, 81, 171–180.
  • 18. Unal, D, Tuney, I, Esiz-Dereboylu, A, Sukatar, A, The effect of UV-A (352 nm) stress on chlorophyll fluorescence, chlorophyll a content, thickness of upper cortex and determinate DNA damage in Physcia semipinnata, Photochemistry and Photobiology, 2009, 94, 71-76.
  • 19. Oh, TJ, Kim, IG, Polyamines protect against DNA strand breaks and aid cell survival against irradiation in Escherichia coli, Biotechnology Techniques, 1998, 12, 755–758.
  • 20. Solheim, B, Zielke, M, Bjerke, JW, Rozema, J, Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems, Plant Ecol, 2006, 182, 109-118.

Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg

Yıl 2018, Cilt: 14 Sayı: 4, 399 - 404, 28.12.2018
https://doi.org/10.18466/cbayarfbe.410546

Öz

In this study the protection ability of polyamines on
Photosystem II (PSII), the proline content of the cells and necrosis formation
induced by Ultraviolet-A irradiation were studied. Although 24 h Ultraviolet-A
exposure decreased the photosynthetic quantum yield (Fv/Fm) ratio in Physcia semipinnata (J. F. Gmel.) Moberg,
thalli that treated with 1 mM polyamine, especially spermidine and spermine,
were slightly influenced by the UV-A exposure. It was also found that spd and
spm treated samples had lower proline content than putrescine (put)-treated samples.
Moreover, It was found that the samples that were treated with spd and spm had
lower percentage of DNA damage than put-treated samples and non-treated groups.
In this study, Ultraviolet-A induced DNA damage detected by acridine
orange/ethidium bromide staining assay. The DNA damage in thalli of P. semipinnata
was detected in situ in phycobiont layer after 24 h of Ultraviolet-A exposure,
in contrast, polyamine-treated samples had a lower rate of necrotic cells.

Kaynakça

  • 1. Strid, AW, Chow, WS, Anderson, JM, UV-B damage and protection at the molecular level in plants, Photosynthesis Research, 1994, 39, 475-489.
  • 2. Riegger, L, Robinson, D, Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antartica. Marine Ecology Progress Series, 1997 160, 13-25.
  • 3. Bouchereau, A, Aziz, A, Larher, F, Martin-Tanguy, J, Polyamines and environmental challenges, recent development, Plant Science, 1999 140, 103–125.
  • 4. Kramer, GF, Norman, HA, Krizek, DT, Mirecki, RM, Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber, Phytochemistry, 1991, 30, 2101–2108.
  • 5. Kotzabasis, K, Fotinou, C, Roubelakis-Angelakis, KA, Ghanotakis, D, Polyamines in the photosynthetic apparatus, Photosystem II highly resolved subcomplexes are enriched in spermine, Photosynthesis Research, 1993, 38, 83–88.
  • 6. Bates, LS, Waldren, RP, Tear, ID, Rapid determination of free proline for water-stress studies, Plant Soil, 1973, 39, 205–207.
  • 7. Unal, D, Tuney, I, Sukatar, A, The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata, Journal of Photochemistry and Photobiology B, 2008, 90, 64-68.
  • 8. Lütz, C, Navakoudis, E, Seidlitz, HK, Kotzabasis, K, Simulated solar irradiation with enhanced UV-B adjust plastid-and thylakoid-associated polyamine changes for UV-B protection, Biochimica et Biophysica Acta-Bioenergetics, 2005, 1710, 24-33.
  • 9. Demir, Y, Growth and proline content of germinating wheat genotypes under ultraviolet light, Turkish Journal of Botany, 2000, 24, 67-70.
  • 10. Alia, P, Mohanty, P, Matysik, J, Effect of proline on the production of singlet oxygen, Amino Acids, 2001, 21, 195-200.
  • 11. Smirnoff, N, Cumbes, QJ, Hydroxyl radical scavenging activity of compatible solute, Phytochemistry, 1989, 28, 1057–1060.
  • 12. Wang, X, Shi, G, Xu, Q, Hu, J, Exogenous polyamines enhance copper tolerance of Nymphoides peltatum, Journal of Plant Physiology, 2007, 164, 1062-70.
  • 13. Duan, JJ, Li, J, Guo, SR, Kang, YY, Exogenous Spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance, Journal of Plant Physiology, 2008, 165, 1620-35.
  • 14. Aziz, A, Martin-Tanguy, J, Larher, F, Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodiumchloride, Physiologia Plantarum, 1998, 104, 195-202.
  • 15. Tanou, G, Ziogas, V, Belghazi, M, Christou, A, Filippou, P, Job, D, Fotopoulos, V, Molassiotis, A, Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress, Plant Cell and Environment, 2014, 37,864-885.
  • 16. Kumar, SG, Mattareddy, A, Sudhakar, C, NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Marus alba L.) with contrasting salt tolerance, Plant Science, 2003, 165, 1245-1251.
  • 17. Hoerter, ID, Arnold, AA, Kuczynska, DA, Shibuya, A, Ward, CS, Sauer, MG, Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli, Journal of Journal of Photochemistry and Photobiology B, 2005, 81, 171–180.
  • 18. Unal, D, Tuney, I, Esiz-Dereboylu, A, Sukatar, A, The effect of UV-A (352 nm) stress on chlorophyll fluorescence, chlorophyll a content, thickness of upper cortex and determinate DNA damage in Physcia semipinnata, Photochemistry and Photobiology, 2009, 94, 71-76.
  • 19. Oh, TJ, Kim, IG, Polyamines protect against DNA strand breaks and aid cell survival against irradiation in Escherichia coli, Biotechnology Techniques, 1998, 12, 755–758.
  • 20. Solheim, B, Zielke, M, Bjerke, JW, Rozema, J, Effects of enhanced UV-B radiation on nitrogen fixation in arctic ecosystems, Plant Ecol, 2006, 182, 109-118.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Dilek Ünal

İnci Tüney Kızılkaya

Yayımlanma Tarihi 28 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 14 Sayı: 4

Kaynak Göster

APA Ünal, D., & Tüney Kızılkaya, İ. (2018). Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 14(4), 399-404. https://doi.org/10.18466/cbayarfbe.410546
AMA Ünal D, Tüney Kızılkaya İ. Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg. CBUJOS. Aralık 2018;14(4):399-404. doi:10.18466/cbayarfbe.410546
Chicago Ünal, Dilek, ve İnci Tüney Kızılkaya. “Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia Semipinnata (J. F. Gmel.) Moberg”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14, sy. 4 (Aralık 2018): 399-404. https://doi.org/10.18466/cbayarfbe.410546.
EndNote Ünal D, Tüney Kızılkaya İ (01 Aralık 2018) Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14 4 399–404.
IEEE D. Ünal ve İ. Tüney Kızılkaya, “Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg”, CBUJOS, c. 14, sy. 4, ss. 399–404, 2018, doi: 10.18466/cbayarfbe.410546.
ISNAD Ünal, Dilek - Tüney Kızılkaya, İnci. “Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia Semipinnata (J. F. Gmel.) Moberg”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 14/4 (Aralık 2018), 399-404. https://doi.org/10.18466/cbayarfbe.410546.
JAMA Ünal D, Tüney Kızılkaya İ. Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg. CBUJOS. 2018;14:399–404.
MLA Ünal, Dilek ve İnci Tüney Kızılkaya. “Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia Semipinnata (J. F. Gmel.) Moberg”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 14, sy. 4, 2018, ss. 399-04, doi:10.18466/cbayarfbe.410546.
Vancouver Ünal D, Tüney Kızılkaya İ. Exogenous Polyamine Treatment Prevents UV-A Induced Cellular Damage and Photoinhibition of Photosystem II in Lichen Physcia semipinnata (J. F. Gmel.) Moberg. CBUJOS. 2018;14(4):399-404.