Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 21 Sayı: 2, 72 - 79, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1562667

Öz

Proje Numarası

2021.05.02.1236

Kaynakça

  • [1]. Judele, R., Laschat, S., Baro, A., Nimtz, M. 2006. Gallic esters of 4,5-dinitrocatechol as potential building blocks for thermotropic liquid crystals. Tetrahedron; 62(41): 9681–9687.
  • [2]. Chavda, V.P., Shah, K.N., Soni, S., Tripathi, M., Bhargava, S., Thakur, M., Parikh, P., Vora, L.K., Thakor, P., Makwana, M., Kapadia, N. 2023. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. International Journal of Pharmaceutics; 647: 123546.
  • [3]. Takikawa, Y., Kaneko, K., Odani, S., Ikemura, T., Iwata, M. 2020. Dielectric anisotropy in PCPB/MBBA mixtures showing the dual frequency characteristic. Japanese Journal of Applied Physics; 59(SD): SDDB05.
  • [4]. Sasani Ghamsari, M., Carlescu, I. (Eds.). 2020. Liquid Crystals and Display Technology. IntechOpen.
  • [5]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2005. Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds. Solid State Phenomena; 106: 145–148.
  • [6]. Khoo, I.C., Chen, C.W., Ho, T.J. 2016. Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C_60. Optics Letters; 41(1): 123.
  • [7]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2010. Photorefractive and photoconductive features of the nanostructured materials. International Journal of Modern Physics B; 24(06n07): 695–702.
  • [8]. Zhang, Y., Yao, F., Pei, Y., Sun, X. 2009. High-diffraction-efficiency holographic gratings in C60-doped nematics. Applied Optics; 48(33): 6506–6510.
  • [9]. Okutan, M., San, S.E., Basaran, E., Yakuphanoglu, F. 2005. Determination of phase transition from nematic to isotropic state in carbon nano-balls doped nematic liquid crystals by electrical conductivity-dielectric measurements. Physics Letters A; 339(6): 461–465.
  • [10]. Ibragimov, T.D. 2021. Effect of fullerenes C60 on dielectric relaxation, electric conductivity, and electro-optic properties of 4-cyano-4′-pentylbiphenyl. Fullerenes, Nanotubes and Carbon Nanostructures; 29(6): 457–463.
  • [11]. Ibragimov, T.D. 2021. Influence of fullerenes C60 and single-walled carbon nanotubes on the Carr–Helfrich effect in nematic liquid crystal. Optik; 237: 166768.
  • [12]. Lee, W., Wang, C.Y., Shih, Y.C. 2004. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Applied Physics Letters; 85(4): 513–515.
  • [13]. Okutan, M., San, S.E., Köysal, O., Şentürk, E. 2010. The electrical properties of a fullerene and C.I. Acid Red 2 (methyl red) doped E7 nematic liquid crystal. Dyes and Pigments; 84(3): 209–212.
  • [14]. Ibragimov, T.D., Imamaliyev, A.R., Ganizade, G.F. 2020. The threshold voltage, dielectric and conductivity properties of C60-doped smectic A liquid crystal. Fullerenes, Nanotubes and Carbon Nanostructures; 28(6): 509–514.
  • [15]. Demir, A., Musatat, A.B. 2024. Evaluation of industrial Poly(tert-butyl acrylate) insulated A p-channel organic field-effect transistor (PtBA-p-OFET). Düzce Üniversitesi Bilim ve Teknoloji Dergisi; 12(3): 1762–1770.
  • [16]. Sheraw, C.D., Zhou, L., Huang, J.R., Gleskova, H., Wagner, S., Jackson, T.N. 2002. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied Physics Letters; 80(6): 1088–1090.
  • [17]. Rogers, J.A., Bao, Z., Makhija, A., Feng, Y., Zhang, Y., Mahajan, A., Veroff, R., Jones, T., MacLean, J., Schlittler, R., Whitesides, G.M. 2001. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences; 98(9): 4835–4840.
  • [18]. Musatat, A.B., Atahan, A., Aksu, M., Zengin, M. 2022. Employing of 2-Acetylpyridine based chalcone as Hg2+ sensing material: Experimental and theoretical examination. Düzce University Journal of Science and Technology Research; 10(4): 2133–2143.
  • [19]. Mas-Torrent, M., Rovira, C. 2011. Role of molecular order and solid-state structure in organic field-effect transistors. Chemical Reviews; 111(8): 4833–4856.
  • [20]. Walser, M.P., Kalb, W.L., Mathis, T., Batlogg, B. 2009. Low-voltage organic transistors and inverters with ultrathin fluoropolymer gate dielectric. Applied Physics Letters; 95(23): 233301.
  • [21]. Fang, X., Wei, Z., Qi, L., Chen, J., Wang, C., Ge, L., Yan, F. 2021. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Advanced Functional Materials; 31(21): 2100237.
  • [22]. Gencel, O., Musatat, A.B., Demir, A., Tozluoğlu, A., Tutuş, A., Kıllı, A., Fidan, H., Çavuş, K.F. Transforming industrial byproduct to eco-friendly functional material: Ground-granulated blast furnace slag reinforced paper for renewable energy storage. Science of the Total Environment; 176616.
  • [23]. Kip, Ş., Gegin, K., Demir, A., Köysal, O., Öztürk, S., Kösemen, A. 2023. The novel n-channel liquid crystal organic field effect transistor (LC-n-OFET): A promising technology for low-power electronics. Organic Electronics; 106965.
  • [24]. Katariya-Jain, A., Deshmukh, R.R. 2022. Effects of dye doping on electro-optical, thermo-electro-optical, and dielectric properties of polymer dispersed liquid crystal films. Journal of Physics and Chemistry of Solids; 160: 110363.
  • [25]. Mi, X.D., Yang, D.K. 1998. Capillary filling of nematic liquid crystals. Physical Review E; 58(2): 1992–2000.
  • [26]. Lueder, E. 2010. Liquid Crystal Displays: Addressing Schemes and Electro‐Optical Effects. Wiley.
  • [27]. Kocakülah, G. 2023. The role of rubrene concentration on dielectric parameters of nematic liquid crystal. Hittite Journal of Science and Engineering; 10(3): 193–199.
  • [28]. Subaşı, A., Emiroğlu, M., Demir, A. 2023. Polarization and relaxation mechanisms in glass fiber-reinforced LED-cured polyester composites incorporating graphene nanotubes. Materials Science and Engineering B; 295: 116614.
  • [29]. Demir, A., Köysal, O. 2016. Investigation of photo-induced change of electro-optical performance in a liquid crystal-organic field effect transistor (LC-OFET). Philosophical Magazine; 96(22): 2362–2371.

Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications

Yıl 2025, Cilt: 21 Sayı: 2, 72 - 79, 27.06.2025
https://doi.org/10.18466/cbayarfbe.1562667

Öz

This study investigates the dielectric anisotropy and electrical modulus-impedance properties of a PCBM/E7 composite material for organic electronic devices applications. The research examines a specially fabricated cell combining nematic liquid crystal E7 with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) semiconductor. Through a comprehensive analysis of dielectric anisotropy, AC conductivity, electrical modulus, and impedance characteristics under varying frequencies and applied voltages (-6.0V to +6.0V), the study reveals distinct behavioral regions and multiple relaxation processes. Key findings include frequency-dependent dielectric anisotropy transitions, enhanced AC conductivity at higher frequencies and voltages, and voltage-modulated impedance characteristics. The observed dual-peak phase angle response suggests multiple relaxation mechanisms, indicating the composite's potential for voltage-tunable electrical properties in advanced optoelectronic applications.

Etik Beyan

There are no ethical issues after the publication of this manuscript.

Destekleyen Kurum

Düzce University

Proje Numarası

2021.05.02.1236

Teşekkür

We acknowledge the vital support from Düzce University and Sakarya University, including their facilities, resources, and academic environment. We thank the faculty and staff for their expertise and assistance. This research was funded by Düzce University Scientific Research Project (Project number: 2021.05.02.1236).

Kaynakça

  • [1]. Judele, R., Laschat, S., Baro, A., Nimtz, M. 2006. Gallic esters of 4,5-dinitrocatechol as potential building blocks for thermotropic liquid crystals. Tetrahedron; 62(41): 9681–9687.
  • [2]. Chavda, V.P., Shah, K.N., Soni, S., Tripathi, M., Bhargava, S., Thakur, M., Parikh, P., Vora, L.K., Thakor, P., Makwana, M., Kapadia, N. 2023. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. International Journal of Pharmaceutics; 647: 123546.
  • [3]. Takikawa, Y., Kaneko, K., Odani, S., Ikemura, T., Iwata, M. 2020. Dielectric anisotropy in PCPB/MBBA mixtures showing the dual frequency characteristic. Japanese Journal of Applied Physics; 59(SD): SDDB05.
  • [4]. Sasani Ghamsari, M., Carlescu, I. (Eds.). 2020. Liquid Crystals and Display Technology. IntechOpen.
  • [5]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2005. Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds. Solid State Phenomena; 106: 145–148.
  • [6]. Khoo, I.C., Chen, C.W., Ho, T.J. 2016. Observation of photorefractive effects in blue-phase liquid crystal containing fullerene-C_60. Optics Letters; 41(1): 123.
  • [7]. Kamanina, N.V., Serov, S.V., Savinov, V.P., Uskoković, D.P. 2010. Photorefractive and photoconductive features of the nanostructured materials. International Journal of Modern Physics B; 24(06n07): 695–702.
  • [8]. Zhang, Y., Yao, F., Pei, Y., Sun, X. 2009. High-diffraction-efficiency holographic gratings in C60-doped nematics. Applied Optics; 48(33): 6506–6510.
  • [9]. Okutan, M., San, S.E., Basaran, E., Yakuphanoglu, F. 2005. Determination of phase transition from nematic to isotropic state in carbon nano-balls doped nematic liquid crystals by electrical conductivity-dielectric measurements. Physics Letters A; 339(6): 461–465.
  • [10]. Ibragimov, T.D. 2021. Effect of fullerenes C60 on dielectric relaxation, electric conductivity, and electro-optic properties of 4-cyano-4′-pentylbiphenyl. Fullerenes, Nanotubes and Carbon Nanostructures; 29(6): 457–463.
  • [11]. Ibragimov, T.D. 2021. Influence of fullerenes C60 and single-walled carbon nanotubes on the Carr–Helfrich effect in nematic liquid crystal. Optik; 237: 166768.
  • [12]. Lee, W., Wang, C.Y., Shih, Y.C. 2004. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Applied Physics Letters; 85(4): 513–515.
  • [13]. Okutan, M., San, S.E., Köysal, O., Şentürk, E. 2010. The electrical properties of a fullerene and C.I. Acid Red 2 (methyl red) doped E7 nematic liquid crystal. Dyes and Pigments; 84(3): 209–212.
  • [14]. Ibragimov, T.D., Imamaliyev, A.R., Ganizade, G.F. 2020. The threshold voltage, dielectric and conductivity properties of C60-doped smectic A liquid crystal. Fullerenes, Nanotubes and Carbon Nanostructures; 28(6): 509–514.
  • [15]. Demir, A., Musatat, A.B. 2024. Evaluation of industrial Poly(tert-butyl acrylate) insulated A p-channel organic field-effect transistor (PtBA-p-OFET). Düzce Üniversitesi Bilim ve Teknoloji Dergisi; 12(3): 1762–1770.
  • [16]. Sheraw, C.D., Zhou, L., Huang, J.R., Gleskova, H., Wagner, S., Jackson, T.N. 2002. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied Physics Letters; 80(6): 1088–1090.
  • [17]. Rogers, J.A., Bao, Z., Makhija, A., Feng, Y., Zhang, Y., Mahajan, A., Veroff, R., Jones, T., MacLean, J., Schlittler, R., Whitesides, G.M. 2001. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences; 98(9): 4835–4840.
  • [18]. Musatat, A.B., Atahan, A., Aksu, M., Zengin, M. 2022. Employing of 2-Acetylpyridine based chalcone as Hg2+ sensing material: Experimental and theoretical examination. Düzce University Journal of Science and Technology Research; 10(4): 2133–2143.
  • [19]. Mas-Torrent, M., Rovira, C. 2011. Role of molecular order and solid-state structure in organic field-effect transistors. Chemical Reviews; 111(8): 4833–4856.
  • [20]. Walser, M.P., Kalb, W.L., Mathis, T., Batlogg, B. 2009. Low-voltage organic transistors and inverters with ultrathin fluoropolymer gate dielectric. Applied Physics Letters; 95(23): 233301.
  • [21]. Fang, X., Wei, Z., Qi, L., Chen, J., Wang, C., Ge, L., Yan, F. 2021. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Advanced Functional Materials; 31(21): 2100237.
  • [22]. Gencel, O., Musatat, A.B., Demir, A., Tozluoğlu, A., Tutuş, A., Kıllı, A., Fidan, H., Çavuş, K.F. Transforming industrial byproduct to eco-friendly functional material: Ground-granulated blast furnace slag reinforced paper for renewable energy storage. Science of the Total Environment; 176616.
  • [23]. Kip, Ş., Gegin, K., Demir, A., Köysal, O., Öztürk, S., Kösemen, A. 2023. The novel n-channel liquid crystal organic field effect transistor (LC-n-OFET): A promising technology for low-power electronics. Organic Electronics; 106965.
  • [24]. Katariya-Jain, A., Deshmukh, R.R. 2022. Effects of dye doping on electro-optical, thermo-electro-optical, and dielectric properties of polymer dispersed liquid crystal films. Journal of Physics and Chemistry of Solids; 160: 110363.
  • [25]. Mi, X.D., Yang, D.K. 1998. Capillary filling of nematic liquid crystals. Physical Review E; 58(2): 1992–2000.
  • [26]. Lueder, E. 2010. Liquid Crystal Displays: Addressing Schemes and Electro‐Optical Effects. Wiley.
  • [27]. Kocakülah, G. 2023. The role of rubrene concentration on dielectric parameters of nematic liquid crystal. Hittite Journal of Science and Engineering; 10(3): 193–199.
  • [28]. Subaşı, A., Emiroğlu, M., Demir, A. 2023. Polarization and relaxation mechanisms in glass fiber-reinforced LED-cured polyester composites incorporating graphene nanotubes. Materials Science and Engineering B; 295: 116614.
  • [29]. Demir, A., Köysal, O. 2016. Investigation of photo-induced change of electro-optical performance in a liquid crystal-organic field effect transistor (LC-OFET). Philosophical Magazine; 96(22): 2362–2371.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotonik, Optoelektronik ve Optik İletişim, Malzeme Fiziği
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Demir 0000-0002-8702-1941

Ahmad Badreddin Musatat 0000-0002-4137-4901

Şule Zeynep Kip 0009-0003-6913-6547

Proje Numarası 2021.05.02.1236
Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 2

Kaynak Göster

APA Demir, A., Musatat, A. B., & Kip, Ş. Z. (2025). Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications. Celal Bayar University Journal of Science, 21(2), 72-79. https://doi.org/10.18466/cbayarfbe.1562667
AMA Demir A, Musatat AB, Kip ŞZ. Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications. Celal Bayar University Journal of Science. Haziran 2025;21(2):72-79. doi:10.18466/cbayarfbe.1562667
Chicago Demir, Ahmet, Ahmad Badreddin Musatat, ve Şule Zeynep Kip. “Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications”. Celal Bayar University Journal of Science 21, sy. 2 (Haziran 2025): 72-79. https://doi.org/10.18466/cbayarfbe.1562667.
EndNote Demir A, Musatat AB, Kip ŞZ (01 Haziran 2025) Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications. Celal Bayar University Journal of Science 21 2 72–79.
IEEE A. Demir, A. B. Musatat, ve Ş. Z. Kip, “Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications”, Celal Bayar University Journal of Science, c. 21, sy. 2, ss. 72–79, 2025, doi: 10.18466/cbayarfbe.1562667.
ISNAD Demir, Ahmet vd. “Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications”. Celal Bayar University Journal of Science 21/2 (Haziran2025), 72-79. https://doi.org/10.18466/cbayarfbe.1562667.
JAMA Demir A, Musatat AB, Kip ŞZ. Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications. Celal Bayar University Journal of Science. 2025;21:72–79.
MLA Demir, Ahmet vd. “Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications”. Celal Bayar University Journal of Science, c. 21, sy. 2, 2025, ss. 72-79, doi:10.18466/cbayarfbe.1562667.
Vancouver Demir A, Musatat AB, Kip ŞZ. Investigation of Dielectric Anisotropy and Electrical Modulus-Impedance Properties of PCBM/E7 Composite for Organic Electronic Devices Applications. Celal Bayar University Journal of Science. 2025;21(2):72-9.