Pakistan, currently grappling with a severe electricity shortage, has witnessed a growing utili-zation of PV panels for nationwide electrification efforts. Nonetheless, a significant challenge in deploying PV systems lies in the adverse impact of rising ambient temperatures on solar cell performance. In Pakistan, numerous regions experience ambient temperatures surpass-ing 50ºC, an unfavorable condition for such systems. In the present study, the focus was on mitigating this issue by investigating the impact of cooling on PV panel performance using a Photovoltaic thermal hybrid system (PV/T). The PV/T system was meticulously designed and constructed using locally available resources, and its functionality was tested under Karachi’s local conditions. By implementing a water circulation system through the absorber, the study achieved a noteworthy 3.9% enhancement in electrical efficiency. This improvement translat-ed to an additional thermal energy output of 350 Watts, coupled with a commendable thermal efficiency of 56%. Consequently, the overall efficiency of the entire system was augmented. Remarkably, the outlet temperature of the tubing saw an increase of 5°C to 7°C. The results demonstrated that this hybrid PV/T system outperformed the traditional PV system, making it a promising solution capable of catering to both electrical and domestic heating demands.
Electrical Efficiency Flat Plate Absorber PV/T System Renewable Energy Solar Thermal Energy
Primary Language | English |
---|---|
Subjects | Environmental Engineering (Other) |
Journal Section | Research Articles |
Authors | |
Publication Date | December 31, 2023 |
Submission Date | August 30, 2023 |
Published in Issue | Year 2023 Volume: 1 Issue: 2 |