Yıl 2023,
Cilt: 1 Sayı: 2, 78 - 89, 31.12.2023
Bestami Özkaya
,
Arda Karluvalı
Kaynakça
- REFERENCES
- [1] Taskan E, Hasar H. Effect of different leachate/acetate ratios in a submerged anaerobic membrane bioreactor (SAnMBR). Clean (Weinh) 2012;40:487492. [CrossRef]
- [2] Zhang H, Choi HJ, Huang C. Landfill leachate treatment by Fenton's reagent. The variation of leachate characteristics. Fresenius Environ Bull 2005;14:11781183.
- [3] Ozkaya B, Demir A, Bilgili MS. Enhanced stabilisation and methane potential of MSWs in a field-scale landfill with leachate recirculation. Int J Environ Pollut 2004;21:277292. [CrossRef]
- [4] Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. J Hazard Mater 2008;150:468493. [CrossRef]
- [5] Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 2008;100:203212. [CrossRef]
- [6] You SJ, Zhao QL, Jiang JQ, Zhang JN, Zhao SQ. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Environ Sci Health A 2006;41:27212734. [CrossRef]
- [7] Zhang JN, Zhao QL, You SJ, Jiang JQ, Ren NQ. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol 2008;57:10171021. [CrossRef]
- [8] Gálvez A, Greenman J, Ieropoulos I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour Technol 2009;100:50855091. [CrossRef]
- [9] Greenman J, Gálvez A, Giusti L, Ieropoulos I. Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 2009;44:112119.
[CrossRef]
- [10] Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J. Microbial fuel cell application in landfill leachate treatment. J Hazard Mater 2011;185:763767. [CrossRef]
- [11] Lovley DR, Fraga JL, Coates JD, Blunt‐Harris EL. Humics as an electron donor for anaerobic respiration. Environ Microbiol 1999;1:8998. [CrossRef]
- [12] Kato Marcus A, Torres CI, Rittmann BE. Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 2007;98:11711182. [CrossRef]
- [13] Wanner O, Ebert HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, et al. Mathematical modeling of biofilms. IWA Scientific and Technical Report No.18 IWA Task Group on Biofilm
Modeling, 2006.
- [14] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 2005;23:291298. [CrossRef]
- [15] Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev
2010;34:317. [CrossRef]
- [16] Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006;14:512518. [CrossRef]
- [17] Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 2007;98:25682577. [CrossRef]
- [18] Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 2009;43:95199524. [CrossRef]
- [19] Parameswaran P, Torres CI, Lee HS, Krajmalnik‐Brown R, Rittmann BE. Syntrophic interactions among anode respiring bacteria (ARB) and Non‐ARB in a biofilm anode: electron balances.
Biotechnol Bioeng 2009;103:513523. [CrossRef]
- [20] Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 2003;69:15481555. [CrossRef]
- [21] American Public Health Association. Standard Methods for the Examination of Water and Wastewater. American Water Works Association, Water Environmental Federation. 21st ed. Washington, DC: American Public Health Association; 2005.
- [22] Ozkaya B, Akoğlu B, Karadag D, Acı G, Taksan E, Hasar H. Bioelectricity production using a new electrode material in microbial fuel cell. Bioprocess Biosyst Eng 2012;35:12191227. [CrossRef]
- [23] Logan BE. Microbial Fuel Cells. Hoboken, New Jersey: John Wiley & Sons; 2008.
- [24] Sleutels TH, Darus L, Hamelers HV, Buisman CJ. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresour Technol 2011;102:1117211176. [CrossRef]
- [25] Muyzer G. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities. Mol Microbial
Ecol Manual 1996:344-1.
- [26] Kim GT, Hyun MS, Chang IS, Kim HJ, Park HS, Kim BH, et al. Dissimilatory Fe (III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus
gallinarum isolated from submerged soil. J Appl Microbiol 2005;99:978987. [CrossRef]
- [27] Torres CI, Kato Marcus A, Rittmann BE. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 2007;77:689697. [CrossRef]
- [28] Catal T, Xu S, Li K, Bermek H, Liu H. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosen Bioelectron 2008;24:849854. [CrossRef]
- [29] Torres CI, Marcus AK, Rittmann BE. Phosphate and Bicarbonate Buffers as Proton Carriers Inside the Biofilm of Anode-Respiring Bacteria in Microbial Fuel Cells. In ECS Meeting Abstracts
(No. 7, p. 239). Bristol: IOP Publishing; 2008. [CrossRef]
- [30] Torres CI, Kato Marcus A, Rittmann BE. Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria. Biotechnol Bioeng 2008;100:872881. [CrossRef]
- [31] Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable
substrates. Water Res 2008;42:15011510. [CrossRef]
- [32] Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 2004;38:58095814. [CrossRef]
- [33] Subramaniam PK. Microbial transport and the use of microbial fuel cell technology to prevent iron release in landfills nearby northwest Florida. Dissertations Thesis. The Florida State
University, 2011.
- [34] Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbial Technol
2002;30:145152. [CrossRef]
- [35] Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 2004;38:22812285. [CrossRef]
- [36] Ghangrekar MM, Shinde VB. Wastewater treatment in microbial fuel cell and electricity generation: A sustainable approach. In 12th International Sustainable Development Research
Conference (Vol. 8, p. 201). Princeton, New Jersey: Citeseer; 2006
- [37] Ishii SI, Watanabe K, Yabuki S, Logan BE, Sekiguchi, Y. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbiol 2008;74:73487355. [CrossRef]
- [38] Lee J, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 2003;223:185191. [CrossRef]
Microbial community structure in the biofilm anode of MFC fed with landfill leachate
Yıl 2023,
Cilt: 1 Sayı: 2, 78 - 89, 31.12.2023
Bestami Özkaya
,
Arda Karluvalı
Öz
This study describes the kinetics and diversity of anode respiring bacteria (ARB) in a two- chambered microbial fuel cell (MFC) with a Ti-TiO2 electrode and continuously fed with young or old landfill leachate at varying organic strength and hydraulic retention time. With increasing organic loading, current generation increased, although the Coulombic efficiency decreased. The maximum current densities for young and old leachates were 11 and 6 A/m2, respectively. We observed maximum current densities (Jmax) in kinetics modeling 12.0 A/m2 and 8.0 A/m2 for young and old landfill leachates corresponding to low anode potential losses (η) of 0.25 V. A sequencing analysis of anode biofilm community after PCR-DGGE showed that the Deltaproteobacteria family was predominant on anode surface, especially with young leachate.
Kaynakça
- REFERENCES
- [1] Taskan E, Hasar H. Effect of different leachate/acetate ratios in a submerged anaerobic membrane bioreactor (SAnMBR). Clean (Weinh) 2012;40:487492. [CrossRef]
- [2] Zhang H, Choi HJ, Huang C. Landfill leachate treatment by Fenton's reagent. The variation of leachate characteristics. Fresenius Environ Bull 2005;14:11781183.
- [3] Ozkaya B, Demir A, Bilgili MS. Enhanced stabilisation and methane potential of MSWs in a field-scale landfill with leachate recirculation. Int J Environ Pollut 2004;21:277292. [CrossRef]
- [4] Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. J Hazard Mater 2008;150:468493. [CrossRef]
- [5] Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 2008;100:203212. [CrossRef]
- [6] You SJ, Zhao QL, Jiang JQ, Zhang JN, Zhao SQ. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Environ Sci Health A 2006;41:27212734. [CrossRef]
- [7] Zhang JN, Zhao QL, You SJ, Jiang JQ, Ren NQ. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Sci Technol 2008;57:10171021. [CrossRef]
- [8] Gálvez A, Greenman J, Ieropoulos I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour Technol 2009;100:50855091. [CrossRef]
- [9] Greenman J, Gálvez A, Giusti L, Ieropoulos I. Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol 2009;44:112119.
[CrossRef]
- [10] Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J. Microbial fuel cell application in landfill leachate treatment. J Hazard Mater 2011;185:763767. [CrossRef]
- [11] Lovley DR, Fraga JL, Coates JD, Blunt‐Harris EL. Humics as an electron donor for anaerobic respiration. Environ Microbiol 1999;1:8998. [CrossRef]
- [12] Kato Marcus A, Torres CI, Rittmann BE. Conduction‐based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 2007;98:11711182. [CrossRef]
- [13] Wanner O, Ebert HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, et al. Mathematical modeling of biofilms. IWA Scientific and Technical Report No.18 IWA Task Group on Biofilm
Modeling, 2006.
- [14] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 2005;23:291298. [CrossRef]
- [15] Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev
2010;34:317. [CrossRef]
- [16] Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006;14:512518. [CrossRef]
- [17] Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 2007;98:25682577. [CrossRef]
- [18] Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, et al. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 2009;43:95199524. [CrossRef]
- [19] Parameswaran P, Torres CI, Lee HS, Krajmalnik‐Brown R, Rittmann BE. Syntrophic interactions among anode respiring bacteria (ARB) and Non‐ARB in a biofilm anode: electron balances.
Biotechnol Bioeng 2009;103:513523. [CrossRef]
- [20] Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 2003;69:15481555. [CrossRef]
- [21] American Public Health Association. Standard Methods for the Examination of Water and Wastewater. American Water Works Association, Water Environmental Federation. 21st ed. Washington, DC: American Public Health Association; 2005.
- [22] Ozkaya B, Akoğlu B, Karadag D, Acı G, Taksan E, Hasar H. Bioelectricity production using a new electrode material in microbial fuel cell. Bioprocess Biosyst Eng 2012;35:12191227. [CrossRef]
- [23] Logan BE. Microbial Fuel Cells. Hoboken, New Jersey: John Wiley & Sons; 2008.
- [24] Sleutels TH, Darus L, Hamelers HV, Buisman CJ. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresour Technol 2011;102:1117211176. [CrossRef]
- [25] Muyzer G. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities. Mol Microbial
Ecol Manual 1996:344-1.
- [26] Kim GT, Hyun MS, Chang IS, Kim HJ, Park HS, Kim BH, et al. Dissimilatory Fe (III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus
gallinarum isolated from submerged soil. J Appl Microbiol 2005;99:978987. [CrossRef]
- [27] Torres CI, Kato Marcus A, Rittmann BE. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 2007;77:689697. [CrossRef]
- [28] Catal T, Xu S, Li K, Bermek H, Liu H. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosen Bioelectron 2008;24:849854. [CrossRef]
- [29] Torres CI, Marcus AK, Rittmann BE. Phosphate and Bicarbonate Buffers as Proton Carriers Inside the Biofilm of Anode-Respiring Bacteria in Microbial Fuel Cells. In ECS Meeting Abstracts
(No. 7, p. 239). Bristol: IOP Publishing; 2008. [CrossRef]
- [30] Torres CI, Kato Marcus A, Rittmann BE. Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria. Biotechnol Bioeng 2008;100:872881. [CrossRef]
- [31] Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable
substrates. Water Res 2008;42:15011510. [CrossRef]
- [32] Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 2004;38:58095814. [CrossRef]
- [33] Subramaniam PK. Microbial transport and the use of microbial fuel cell technology to prevent iron release in landfills nearby northwest Florida. Dissertations Thesis. The Florida State
University, 2011.
- [34] Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbial Technol
2002;30:145152. [CrossRef]
- [35] Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 2004;38:22812285. [CrossRef]
- [36] Ghangrekar MM, Shinde VB. Wastewater treatment in microbial fuel cell and electricity generation: A sustainable approach. In 12th International Sustainable Development Research
Conference (Vol. 8, p. 201). Princeton, New Jersey: Citeseer; 2006
- [37] Ishii SI, Watanabe K, Yabuki S, Logan BE, Sekiguchi, Y. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl Environ Microbiol 2008;74:73487355. [CrossRef]
- [38] Lee J, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 2003;223:185191. [CrossRef]