Research Article
BibTex RIS Cite

Year 2023, Volume: 72 Issue: 2, 352 - 362, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1146782
https://izlik.org/JA96NB34GH

Abstract

References

  • Abita, R., Existence and asymptotic behavior of solutions for degenerate nonlinear Kirchhoff strings with variable-exponent nonlinearities, Acta Mathematica Vietnamica, 46 (2021), 613-643. https://doi.org/10.1007/s40306-021-00420-7
  • Alkhalifa, L., Dridi, H., Zennir, K., Blow-up of certain solutions to nonlinear wave equations in the Kirchhoff-type equation with variable exponents and positive initial energy, Journal of Function Spaces, (2021), 1-9. https://doi.org/10.1155/2021/5592918
  • Antontsev, S. N., Ferreira, J., Pi¸skin, E., Cordeiro, S. M. S., Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Analysis: Real World Applications, 61 (2021) 1-13. https://doi.org/10.1016/j.nonrwa.2021.103341
  • Antontsev, S. N., Ferreira, J., Pi¸skin, E., Existence and blow up of Petrovsky equation solutions with strong damping and variable exponents, Electronic Journal of Differential Equations, 2021 (2021) 1-18. https://digital.library.txstate.edu/handle/10877/14403
  • Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, 66 (2006) 1383-1406. https://doi.org/10.1137/050624522
  • Diening, L., Hasto, P., Harjulehto, P., Ruzicka, M. M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011.
  • Fan, X. L., Shen, J. S., Zhao, D., Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$ , J. Math. Anal. Appl., 263 (2001), 749-760. https://doi.org/10.1006/jmaa.2001.7618
  • Kirchhoff, G., Mechanik, Teubner, 1883.
  • Kovacik, O., Rakosnik, J., On spaces $L^{p(x)}(\Omega)$ , and $W^{k,p(x)}(\Omega)$ , Czechoslovak Mathematical Journal, 41 (1991), 592-618. http://dml.cz/dmlcz/102493
  • Li, X., Guo, B., Liao, M., Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources, Computers and Mathematics with Applications 79 (2020), 1012-1022. https://doi.org/10.1016/j.camwa.2019.08.016
  • Messaoudi, S.A., Bouhoufani, O., Hamchi, I., Alahyone, M., Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electronic Journal of Differential Equations, 2021 (2021), 1-33. http://ejde.math.unt.edu/
  • Messaoudi, S. A., Talahmeh, A. A., Blow up in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Meth. Appl. Sci., 40 (2017), 6976-6986. https://doi.org/10.1002/mma.4505
  • Messaoudi, S. A., Talahmeh, A. A., Al-Shail, J. H., Nonlinear damped wave equation: Existence and blow-up, Comp. Math. Appl., 74 (2017), 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
  • Ouaoua, A., Khaldi, A., Maouni, M., Global existence and stability of solution for a p-Kirchhoff type hyperbolic equation with variable exponents, Bol. Soc. Paran. Mat., 40 (2022), 1-12. http://dx.doi.org/10.5269/bspm.51464
  • Pişkin, E., Sobolev Spaces, Seçkin Publishing, 2017 (in Turkish).
  • Pişkin, E., Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl., 11 (2020), 37- 45. http://dx.doi.org/10.22075/ijnaa.2019.16022.1841
  • Pişkin, E., Finite time blow up of solutions for a strongly damped nonlinear Klein-Gordon equation with variable exponents, Honam Mathematical J., 40(4) (2018), 771-783. https://doi.org/10.5831/HMJ.2018.40.4.771
  • Pişkin, E., Yılmaz, N., Blow up of solutions for a system of strongly damped Petrovsky equations with variable exponents, Acta Universitatis Apulensis, 71 (2022), 87-99. doi: 10.17114/j.aua.2022.71.06
  • Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000. http://hdl.handle.net/2433/63967
  • Shahrouzi, M., Exponential growth of solutions for a variable-exponent fourth-order viscoelastic equation with nonlinear boundary feedback, Ser. Math. Inform., 37 (2022), 507-520.
  • Shahrouzi, M., Ferreira, J., Pişkin, E. Stability result for a variable-exponent viscoelastic double-Kirchhoff type inverse source problem with nonlocal degenerate damping term, Ricerche di Matematica, https://doi.org/10.1007/s11587-022-00713-5 (in press).

Upper bounds for the blow up time for the Kirchhoff- type equation

Year 2023, Volume: 72 Issue: 2, 352 - 362, 23.06.2023
https://doi.org/10.31801/cfsuasmas.1146782
https://izlik.org/JA96NB34GH

Abstract

In this research, we take into account the Kirchhoff type equation with variable exponent. The Kirchhoff type equation is known as a kind of evolution equations,namely, PDEs, where t is an independent variable. This type problem can be extensively used in many mathematical models of various applied sciences such as flows of electrorheological fluids, thin liquid films, and so on. This research, we investigate the upper bound for blow up time under suitable conditions.

Thanks

This article was presented in summary at the 4th International Conference on Pure and Applied Mathematics (ICPAM - VAN 2022), Van-Turkey, 22-23 June 2022.

References

  • Abita, R., Existence and asymptotic behavior of solutions for degenerate nonlinear Kirchhoff strings with variable-exponent nonlinearities, Acta Mathematica Vietnamica, 46 (2021), 613-643. https://doi.org/10.1007/s40306-021-00420-7
  • Alkhalifa, L., Dridi, H., Zennir, K., Blow-up of certain solutions to nonlinear wave equations in the Kirchhoff-type equation with variable exponents and positive initial energy, Journal of Function Spaces, (2021), 1-9. https://doi.org/10.1155/2021/5592918
  • Antontsev, S. N., Ferreira, J., Pi¸skin, E., Cordeiro, S. M. S., Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Analysis: Real World Applications, 61 (2021) 1-13. https://doi.org/10.1016/j.nonrwa.2021.103341
  • Antontsev, S. N., Ferreira, J., Pi¸skin, E., Existence and blow up of Petrovsky equation solutions with strong damping and variable exponents, Electronic Journal of Differential Equations, 2021 (2021) 1-18. https://digital.library.txstate.edu/handle/10877/14403
  • Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, 66 (2006) 1383-1406. https://doi.org/10.1137/050624522
  • Diening, L., Hasto, P., Harjulehto, P., Ruzicka, M. M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011.
  • Fan, X. L., Shen, J. S., Zhao, D., Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$ , J. Math. Anal. Appl., 263 (2001), 749-760. https://doi.org/10.1006/jmaa.2001.7618
  • Kirchhoff, G., Mechanik, Teubner, 1883.
  • Kovacik, O., Rakosnik, J., On spaces $L^{p(x)}(\Omega)$ , and $W^{k,p(x)}(\Omega)$ , Czechoslovak Mathematical Journal, 41 (1991), 592-618. http://dml.cz/dmlcz/102493
  • Li, X., Guo, B., Liao, M., Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources, Computers and Mathematics with Applications 79 (2020), 1012-1022. https://doi.org/10.1016/j.camwa.2019.08.016
  • Messaoudi, S.A., Bouhoufani, O., Hamchi, I., Alahyone, M., Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electronic Journal of Differential Equations, 2021 (2021), 1-33. http://ejde.math.unt.edu/
  • Messaoudi, S. A., Talahmeh, A. A., Blow up in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Meth. Appl. Sci., 40 (2017), 6976-6986. https://doi.org/10.1002/mma.4505
  • Messaoudi, S. A., Talahmeh, A. A., Al-Shail, J. H., Nonlinear damped wave equation: Existence and blow-up, Comp. Math. Appl., 74 (2017), 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
  • Ouaoua, A., Khaldi, A., Maouni, M., Global existence and stability of solution for a p-Kirchhoff type hyperbolic equation with variable exponents, Bol. Soc. Paran. Mat., 40 (2022), 1-12. http://dx.doi.org/10.5269/bspm.51464
  • Pişkin, E., Sobolev Spaces, Seçkin Publishing, 2017 (in Turkish).
  • Pişkin, E., Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl., 11 (2020), 37- 45. http://dx.doi.org/10.22075/ijnaa.2019.16022.1841
  • Pişkin, E., Finite time blow up of solutions for a strongly damped nonlinear Klein-Gordon equation with variable exponents, Honam Mathematical J., 40(4) (2018), 771-783. https://doi.org/10.5831/HMJ.2018.40.4.771
  • Pişkin, E., Yılmaz, N., Blow up of solutions for a system of strongly damped Petrovsky equations with variable exponents, Acta Universitatis Apulensis, 71 (2022), 87-99. doi: 10.17114/j.aua.2022.71.06
  • Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000. http://hdl.handle.net/2433/63967
  • Shahrouzi, M., Exponential growth of solutions for a variable-exponent fourth-order viscoelastic equation with nonlinear boundary feedback, Ser. Math. Inform., 37 (2022), 507-520.
  • Shahrouzi, M., Ferreira, J., Pişkin, E. Stability result for a variable-exponent viscoelastic double-Kirchhoff type inverse source problem with nonlocal degenerate damping term, Ricerche di Matematica, https://doi.org/10.1007/s11587-022-00713-5 (in press).
There are 21 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Yavuz Dinç 0000-0003-0897-4101

Erhan Pişkin 0000-0001-6587-4479

Prof.dr.cemil Tunc 0000-0003-2909-8753

Submission Date August 3, 2022
Acceptance Date November 27, 2022
Publication Date June 23, 2023
DOI https://doi.org/10.31801/cfsuasmas.1146782
IZ https://izlik.org/JA96NB34GH
Published in Issue Year 2023 Volume: 72 Issue: 2

Cite

APA Dinç, Y., Pişkin, E., & Tunc, P. (2023). Upper bounds for the blow up time for the Kirchhoff- type equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 352-362. https://doi.org/10.31801/cfsuasmas.1146782
AMA 1.Dinç Y, Pişkin E, Tunc P. Upper bounds for the blow up time for the Kirchhoff- type equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(2):352-362. doi:10.31801/cfsuasmas.1146782
Chicago Dinç, Yavuz, Erhan Pişkin, and Prof.dr.cemil Tunc. 2023. “Upper Bounds for the Blow up Time for the Kirchhoff- Type Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 (2): 352-62. https://doi.org/10.31801/cfsuasmas.1146782.
EndNote Dinç Y, Pişkin E, Tunc P (June 1, 2023) Upper bounds for the blow up time for the Kirchhoff- type equation. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 2 352–362.
IEEE [1]Y. Dinç, E. Pişkin, and P. Tunc, “Upper bounds for the blow up time for the Kirchhoff- type equation”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2, pp. 352–362, June 2023, doi: 10.31801/cfsuasmas.1146782.
ISNAD Dinç, Yavuz - Pişkin, Erhan - Tunc, Prof.dr.cemil. “Upper Bounds for the Blow up Time for the Kirchhoff- Type Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/2 (June 1, 2023): 352-362. https://doi.org/10.31801/cfsuasmas.1146782.
JAMA 1.Dinç Y, Pişkin E, Tunc P. Upper bounds for the blow up time for the Kirchhoff- type equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:352–362.
MLA Dinç, Yavuz, et al. “Upper Bounds for the Blow up Time for the Kirchhoff- Type Equation”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 2, June 2023, pp. 352-6, doi:10.31801/cfsuasmas.1146782.
Vancouver 1.Dinç Y, Pişkin E, Tunc P. Upper bounds for the blow up time for the Kirchhoff- type equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. [Internet]. 2023 June 1;72(2):352-6. Available from: https://izlik.org/JA96NB34GH

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.