Research Article
BibTex RIS Cite

A Diophantine equation including Fibonacci and Fibonomial coefficients

Year 2023, Volume: 72 Issue: 4, 992 - 999, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1247415
https://izlik.org/JA37EK23KE

Abstract

In this paper, we solve the equation
\begin{equation*}
\sum_{k=0}^{m} {{2m+1}\brack{k}}_{F}\pm F_{t}=F_{n},
\end{equation*}
under weak assumptions. Here, $F_n$ is $n^{th}$ Fibonacci number and ${{.}\brack {.}}_{F}$ denotes Fibonomial coefficient.

References

  • Berndt, B. C., Galway, W., The Brocard–Ramanujan diophantine equation $n! + 1 = m^{2}$, Ramanujan J., 4 (2000), 41–42. https://doi.org/10.1023/A:1009873805276
  • Bollman, M., Hernandez, H. S., Luca, F., Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen, 77 (2010), 211–224.
  • Carmichael, R. D., On the numerical factors of the arithmetics forms $\alpha^{n}\pm\beta^{n}$, Annals Math., 2(15) (1913), 30-70.
  • Grossman, G., Luca, F., Sums of factorials in binary recurrence sequences, J. Number Theory, 93 (2002), 87–107. https://doi.org/10.1006/jnth.2001.2718
  • Irmak, N., Sum of the Fibonomial coefficients at most one away from Fibonacci numbers, Math. Reports, 18(68)(4) (2016), 567-571.
  • Irmak, N., S¸iar, Z., Keskin, R., On the sum of the three arbitrary Fibonacci and Lucas numbers, Notes Numbers Theory Discrete Math., 25(4) (2019), 96-101. https://doi.org/10.7546/nntdm.2019.25.4.96-101
  • Kilic, E., Akkuş, I., Ohtsuka, H., Some generalized Fibonomial sums related with the Gaussian q-Binomial sum, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103)(1) (2012), 51-61.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • Luca, F., Siksek, S., Factorials expressible as sums of at most three Fibonacci numbers, Proc. of the Edinburgh Math. Soc., 53 (2010), 679–729. https://doi.org/10.1017/S0013091508000874
  • Marques, D., Fibonomial coefficients at most one away from Fibonacci Numbers, Demonstratio Math., 45(1) (2012), 25-28. https://doi.org/10.1515/dema-2013-0360
  • Marques, D., The Fibonacci version of a variant the Brocard-Ramanujan Diophantine equation, Far East J. Math. Sci., 56(2) (2011), 219-224.
  • Marques, D., The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Portugal. Math., 68(2) (2011), 185-189. https://doi.org/10.4171/PM/1887
  • Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Portugal. Math., 69 (2012), 213-220. https://doi.org/10.4171/PM/1914

Year 2023, Volume: 72 Issue: 4, 992 - 999, 29.12.2023
https://doi.org/10.31801/cfsuasmas.1247415
https://izlik.org/JA37EK23KE

Abstract

References

  • Berndt, B. C., Galway, W., The Brocard–Ramanujan diophantine equation $n! + 1 = m^{2}$, Ramanujan J., 4 (2000), 41–42. https://doi.org/10.1023/A:1009873805276
  • Bollman, M., Hernandez, H. S., Luca, F., Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen, 77 (2010), 211–224.
  • Carmichael, R. D., On the numerical factors of the arithmetics forms $\alpha^{n}\pm\beta^{n}$, Annals Math., 2(15) (1913), 30-70.
  • Grossman, G., Luca, F., Sums of factorials in binary recurrence sequences, J. Number Theory, 93 (2002), 87–107. https://doi.org/10.1006/jnth.2001.2718
  • Irmak, N., Sum of the Fibonomial coefficients at most one away from Fibonacci numbers, Math. Reports, 18(68)(4) (2016), 567-571.
  • Irmak, N., S¸iar, Z., Keskin, R., On the sum of the three arbitrary Fibonacci and Lucas numbers, Notes Numbers Theory Discrete Math., 25(4) (2019), 96-101. https://doi.org/10.7546/nntdm.2019.25.4.96-101
  • Kilic, E., Akkuş, I., Ohtsuka, H., Some generalized Fibonomial sums related with the Gaussian q-Binomial sum, Bull. Math. Soc. Sci. Math. Roumanie Tome, 55(103)(1) (2012), 51-61.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
  • Luca, F., Siksek, S., Factorials expressible as sums of at most three Fibonacci numbers, Proc. of the Edinburgh Math. Soc., 53 (2010), 679–729. https://doi.org/10.1017/S0013091508000874
  • Marques, D., Fibonomial coefficients at most one away from Fibonacci Numbers, Demonstratio Math., 45(1) (2012), 25-28. https://doi.org/10.1515/dema-2013-0360
  • Marques, D., The Fibonacci version of a variant the Brocard-Ramanujan Diophantine equation, Far East J. Math. Sci., 56(2) (2011), 219-224.
  • Marques, D., The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Portugal. Math., 68(2) (2011), 185-189. https://doi.org/10.4171/PM/1887
  • Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Portugal. Math., 69 (2012), 213-220. https://doi.org/10.4171/PM/1914
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Nurettin Irmak 0000-0003-0409-4342

Submission Date February 3, 2023
Acceptance Date August 1, 2023
Publication Date December 29, 2023
DOI https://doi.org/10.31801/cfsuasmas.1247415
IZ https://izlik.org/JA37EK23KE
Published in Issue Year 2023 Volume: 72 Issue: 4

Cite

APA Irmak, N. (2023). A Diophantine equation including Fibonacci and Fibonomial coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(4), 992-999. https://doi.org/10.31801/cfsuasmas.1247415
AMA 1.Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(4):992-999. doi:10.31801/cfsuasmas.1247415
Chicago Irmak, Nurettin. 2023. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 (4): 992-99. https://doi.org/10.31801/cfsuasmas.1247415.
EndNote Irmak N (December 1, 2023) A Diophantine equation including Fibonacci and Fibonomial coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 4 992–999.
IEEE [1]N. Irmak, “A Diophantine equation including Fibonacci and Fibonomial coefficients”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 4, pp. 992–999, Dec. 2023, doi: 10.31801/cfsuasmas.1247415.
ISNAD Irmak, Nurettin. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/4 (December 1, 2023): 992-999. https://doi.org/10.31801/cfsuasmas.1247415.
JAMA 1.Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:992–999.
MLA Irmak, Nurettin. “A Diophantine Equation Including Fibonacci and Fibonomial Coefficients”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 4, Dec. 2023, pp. 992-9, doi:10.31801/cfsuasmas.1247415.
Vancouver 1.Irmak N. A Diophantine equation including Fibonacci and Fibonomial coefficients. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. [Internet]. 2023 Dec. 1;72(4):992-9. Available from: https://izlik.org/JA37EK23KE

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.