Research Article
BibTex RIS Cite

Year 2025, Volume: 74 Issue: 2, 267 - 276, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1500845
https://izlik.org/JA53KX49DH

Abstract

References

  • Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016.
  • Akgül, A., Khoshnawb, S. H. A., Application of fractional derivative on non-linear biochemical reaction models, International Journal of Intelligent Networks, 1 (2020), 52-58. https://doi.org/10.1016/j.ijin.2020.05.001.
  • Caputo, M., Mainardi, F., Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento, 1 (1971), 161-198. https://doi.org/10.1007/BF02820620.
  • Chen, W., Sun, H., Li, X., Fractional Derivative Modeling in Mechanics and Engineering, Springer, Singapore, 2022. https://doi.org/10.1007/978-981-16-8802-7.
  • Durmaz, H., Özdemir, Z., Şekerci, Y., Fractional approach to evolution of the magnetic field lines near the magnetic null points, Physica Scripta, 99 (2024). https://doi.org/10.1088/1402-4896/ad1c7e.
  • Gözütok, U., C¸ oban, H. A., Sağıroğlu, Y., Frenet frame with respect to conformable derivative, Filomat, 33(6) (2019), 1541-1550. https://doi.org/10.2298/FIL1906541G.
  • Has, A., Yılmaz, B., Ayvacı, K. H., $C_{\alpha}-$− ruled surfaces respect to direction curve in fractional differential geometry, Journal of Geometry, 115(11) (2024), 1-18. https://doi.org/10.1007/s00022-023-00710-5.
  • Has, A., Yılmaz, B., Special fractional curve pairs with fractional calculus, International Electronic Journal of Geometry, 15(1) (2022), 132-144. https://doi.org/10.36890/IEJG.1010311.
  • Has, A., Yılmaz, B., Effect of fractional analysis on some special curves, Turkish Journal of Mathematics, 47(5) (2023), 1423-1436. https://doi.org/10.55730/1300-0098.3438.
  • Has, A., Yılmaz, B., Effect of fractional analysis on magnetic curves, Revista mexicana de f´ısica, 68(4) (2022), 1-15. https://doi.org/10.31349/RevMexFis.68.041401.
  • Has, A., Yılmaz, B., $C_{\alpha}-$− helices and $C_{\alpha}-$− slant helices in fractional differential geometry, Arabian Journal of Mathematics, 13 (2024), 291-301. https://doi.org/10.1007/s40065-024-00460-5.
  • Has, A., Yılmaz, B., $C_{\alpha}-$− curves and their $C_{\alpha}-$− frame in conformable differential geometry, Journal of Universal Mathematics, 7(2) (2024), 99-112. https://doi.org/10.33773/jum.1508243.
  • Has, A., Yılmaz, B., Measurement and calculation on conformable surfaces, Mediterranean Journal of Mathematics, 20 (2023), 1-18. https://doi.org/10.1007/s00009-023-02471-6.
  • Jumarie, G., On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling, Central European Journal of Physics, 11(6) (2013), 617-633. https://doi.org/10.2478/s11534-013-0256-7.
  • Kasap, E., Yüce, S., Kuruoğlu, N., The involute-evolute offsets of ruled surfaces, Iranian Journal of Science and Tecnology, Transaction A, 33(2) (2009), 195-201. 10.22099/ijsts.2009.2215.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70. http://dx.doi.org/10.1016/j.cam.2014.01.002.
  • Magin, R. L., Fractional calculus in bioengineering, Crit Rev Biomed Eng., 32(1) (2004), 1-104. https://doi.org/10. 1615/critrevbiomedeng.v32.i1.10. PMID: 15248549.
  • Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. https://api.semanticscholar.org/CorpusID:117250850.
  • Orbay, K., Kasap, E., Aydemir, İ., Mannheim offsets of ruled surfaces, Mathematical Problems in Enginnering, (2009), 1-9. https://doi.org/10.1155/2009/160917.
  • Podlubny, I., Fractional Differential Equations, Academic Pres, New York, 1999. https://doi.org/10.1007/978-3-030-76043-4.
  • Ravani, B., Ku, T. S., Bertrand offsets of ruled and developable surfaces, Computer-Aided Design, 23(2) (1991), 145-152. https://doi.org/10.1016/0010-4485(91)90005-H.
  • Syouri, S. T. R., Sulaiman, I. M., Mamat, M., Abas, S. S., Ahmad, M. Z., Conformable fractional derivative and its application to partial fractional derivatives, J. Math. Comput. Sci., 11(3) (2021), 3027-3036. https://doi.org/10. 28919/jmcs/5655.
  • Trasov, V. E., On chain rule for fractional derivatives, Communications in Nonlinear Science and Numerical Simulations, 30(1) (2016), 1-4. https://doi.org/10.1016/j.cnsns.2015.06.007.
  • Uchaikin, V. V., Fractional Derivatives for Physicists and Engineers, Springer, Berlin, Heidelberg, 2013. https://doi. org/10.1007/978-3-642-33911-0.
  • Yajima, T., Oiwa, S., Yamasaki, K., Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fractional Calculus and Applied Analysis, 21 (2018), 1493-1505. https://doi.org/10.1515/fca-2018-0078.
  • Yılmaz, B., A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, Optik, 247 (2021), 168026. https://doi.org/10.1016/j.ijleo.2021.168026.
  • Yılmaz, B., Has, A., Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame, Optik, 260 (2022), 169067. https://doi.org/10.1016/j.ijleo.2022.169067.

On special ruled surface pairs in fractional calculus

Year 2025, Volume: 74 Issue: 2, 267 - 276, 19.06.2025
https://doi.org/10.31801/cfsuasmas.1500845
https://izlik.org/JA53KX49DH

Abstract

In this paper, we extend the theory of special fractional curve pairs (i.e., F-Bertrand, FMannheim, and F-involute-evolute curve pairs) to fractional ruled surfaces with the perspective of fractional calculus. Next, we characterize two fractional ruled surfaces, offset in the senses of F-Bertrand, F-Mannheim, and F-involute-evolute. Moreover, considering the chain rules in fractional calculus, some significant theorems are proved, and the developability conditions are examined by calculating the distribution parameters. Finally, we give examples to verify the results.

References

  • Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016.
  • Akgül, A., Khoshnawb, S. H. A., Application of fractional derivative on non-linear biochemical reaction models, International Journal of Intelligent Networks, 1 (2020), 52-58. https://doi.org/10.1016/j.ijin.2020.05.001.
  • Caputo, M., Mainardi, F., Linear models of dissipation in anelastic solids, La Rivista del Nuovo Cimento, 1 (1971), 161-198. https://doi.org/10.1007/BF02820620.
  • Chen, W., Sun, H., Li, X., Fractional Derivative Modeling in Mechanics and Engineering, Springer, Singapore, 2022. https://doi.org/10.1007/978-981-16-8802-7.
  • Durmaz, H., Özdemir, Z., Şekerci, Y., Fractional approach to evolution of the magnetic field lines near the magnetic null points, Physica Scripta, 99 (2024). https://doi.org/10.1088/1402-4896/ad1c7e.
  • Gözütok, U., C¸ oban, H. A., Sağıroğlu, Y., Frenet frame with respect to conformable derivative, Filomat, 33(6) (2019), 1541-1550. https://doi.org/10.2298/FIL1906541G.
  • Has, A., Yılmaz, B., Ayvacı, K. H., $C_{\alpha}-$− ruled surfaces respect to direction curve in fractional differential geometry, Journal of Geometry, 115(11) (2024), 1-18. https://doi.org/10.1007/s00022-023-00710-5.
  • Has, A., Yılmaz, B., Special fractional curve pairs with fractional calculus, International Electronic Journal of Geometry, 15(1) (2022), 132-144. https://doi.org/10.36890/IEJG.1010311.
  • Has, A., Yılmaz, B., Effect of fractional analysis on some special curves, Turkish Journal of Mathematics, 47(5) (2023), 1423-1436. https://doi.org/10.55730/1300-0098.3438.
  • Has, A., Yılmaz, B., Effect of fractional analysis on magnetic curves, Revista mexicana de f´ısica, 68(4) (2022), 1-15. https://doi.org/10.31349/RevMexFis.68.041401.
  • Has, A., Yılmaz, B., $C_{\alpha}-$− helices and $C_{\alpha}-$− slant helices in fractional differential geometry, Arabian Journal of Mathematics, 13 (2024), 291-301. https://doi.org/10.1007/s40065-024-00460-5.
  • Has, A., Yılmaz, B., $C_{\alpha}-$− curves and their $C_{\alpha}-$− frame in conformable differential geometry, Journal of Universal Mathematics, 7(2) (2024), 99-112. https://doi.org/10.33773/jum.1508243.
  • Has, A., Yılmaz, B., Measurement and calculation on conformable surfaces, Mediterranean Journal of Mathematics, 20 (2023), 1-18. https://doi.org/10.1007/s00009-023-02471-6.
  • Jumarie, G., On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling, Central European Journal of Physics, 11(6) (2013), 617-633. https://doi.org/10.2478/s11534-013-0256-7.
  • Kasap, E., Yüce, S., Kuruoğlu, N., The involute-evolute offsets of ruled surfaces, Iranian Journal of Science and Tecnology, Transaction A, 33(2) (2009), 195-201. 10.22099/ijsts.2009.2215.
  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70. http://dx.doi.org/10.1016/j.cam.2014.01.002.
  • Magin, R. L., Fractional calculus in bioengineering, Crit Rev Biomed Eng., 32(1) (2004), 1-104. https://doi.org/10. 1615/critrevbiomedeng.v32.i1.10. PMID: 15248549.
  • Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. https://api.semanticscholar.org/CorpusID:117250850.
  • Orbay, K., Kasap, E., Aydemir, İ., Mannheim offsets of ruled surfaces, Mathematical Problems in Enginnering, (2009), 1-9. https://doi.org/10.1155/2009/160917.
  • Podlubny, I., Fractional Differential Equations, Academic Pres, New York, 1999. https://doi.org/10.1007/978-3-030-76043-4.
  • Ravani, B., Ku, T. S., Bertrand offsets of ruled and developable surfaces, Computer-Aided Design, 23(2) (1991), 145-152. https://doi.org/10.1016/0010-4485(91)90005-H.
  • Syouri, S. T. R., Sulaiman, I. M., Mamat, M., Abas, S. S., Ahmad, M. Z., Conformable fractional derivative and its application to partial fractional derivatives, J. Math. Comput. Sci., 11(3) (2021), 3027-3036. https://doi.org/10. 28919/jmcs/5655.
  • Trasov, V. E., On chain rule for fractional derivatives, Communications in Nonlinear Science and Numerical Simulations, 30(1) (2016), 1-4. https://doi.org/10.1016/j.cnsns.2015.06.007.
  • Uchaikin, V. V., Fractional Derivatives for Physicists and Engineers, Springer, Berlin, Heidelberg, 2013. https://doi. org/10.1007/978-3-642-33911-0.
  • Yajima, T., Oiwa, S., Yamasaki, K., Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fractional Calculus and Applied Analysis, 21 (2018), 1493-1505. https://doi.org/10.1515/fca-2018-0078.
  • Yılmaz, B., A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus, Optik, 247 (2021), 168026. https://doi.org/10.1016/j.ijleo.2021.168026.
  • Yılmaz, B., Has, A., Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame, Optik, 260 (2022), 169067. https://doi.org/10.1016/j.ijleo.2022.169067.
There are 27 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Zehra Nur Koçak 0009-0001-1631-2063

Emel Karaca 0000-0003-0703-939X

Submission Date June 13, 2024
Acceptance Date February 10, 2025
Publication Date June 19, 2025
DOI https://doi.org/10.31801/cfsuasmas.1500845
IZ https://izlik.org/JA53KX49DH
Published in Issue Year 2025 Volume: 74 Issue: 2

Cite

APA Koçak, Z. N., & Karaca, E. (2025). On special ruled surface pairs in fractional calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(2), 267-276. https://doi.org/10.31801/cfsuasmas.1500845
AMA 1.Koçak ZN, Karaca E. On special ruled surface pairs in fractional calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(2):267-276. doi:10.31801/cfsuasmas.1500845
Chicago Koçak, Zehra Nur, and Emel Karaca. 2025. “On Special Ruled Surface Pairs in Fractional Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 (2): 267-76. https://doi.org/10.31801/cfsuasmas.1500845.
EndNote Koçak ZN, Karaca E (June 1, 2025) On special ruled surface pairs in fractional calculus. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 2 267–276.
IEEE [1]Z. N. Koçak and E. Karaca, “On special ruled surface pairs in fractional calculus”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 2, pp. 267–276, June 2025, doi: 10.31801/cfsuasmas.1500845.
ISNAD Koçak, Zehra Nur - Karaca, Emel. “On Special Ruled Surface Pairs in Fractional Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/2 (June 1, 2025): 267-276. https://doi.org/10.31801/cfsuasmas.1500845.
JAMA 1.Koçak ZN, Karaca E. On special ruled surface pairs in fractional calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:267–276.
MLA Koçak, Zehra Nur, and Emel Karaca. “On Special Ruled Surface Pairs in Fractional Calculus”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 2, June 2025, pp. 267-76, doi:10.31801/cfsuasmas.1500845.
Vancouver 1.Koçak ZN, Karaca E. On special ruled surface pairs in fractional calculus. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. [Internet]. 2025 June 1;74(2):267-76. Available from: https://izlik.org/JA53KX49DH

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.