Research Article
BibTex RIS Cite

Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$

Year 2025, Volume: 74 Issue: 4, 701 - 708, 24.12.2025
https://doi.org/10.31801/cfsuasmas.1618568

Abstract

Let $\Phi_1, \Phi_2$ be Young functions. In this paper, we examine the inclusion relations among the Orlicz amalgam spaces $W(L^{\Phi_1} (\mathbb{R}^n), L^{\Phi_2} (\mathbb{R}^n))$, where the Orlicz spaces $L^{\Phi_1}(\mathbb{R}^n)$ and $L^{\Phi_2}(\mathbb{R}^n)$ are called the local and global components, respectively. Besides Lebesgue type Wiener amalgam spaces, our study is a generalization of the results that have been obtained for the Orlicz spaces and Lebesgue spaces.

Supporting Institution

This research was funded by Scientific Research Projects Coordination Unit of İstanbul University, project number FBA-2023-39840.

Thanks

I would like to thank Prof. S. Öztop for critical reading of the manuscript and valuable suggestions on the subject.

References

  • Arıs, B., Orlicz Amalgam spaces on the affine group, Hacet. J. Math. Stat., 54(2) (2025), 529–541. https://doi.org/10.15672/hujms.1460222.
  • Arıs, B., Öztop, S., Wiener amalgam spaces with respect to Orlicz spaces on the affine group, J. Pseudo. Differ. Oper. Appl., 14(23) (2023), 23. https://doi.org/10.1007/s11868-023-00516-8.
  • Benedek, A., Panzone, R., The spaces $L^p$ with mixed norm, Duke Math. J., 28(3) (1961), 301-324. https://doi.org/10.1215/s0012-7094-61-02828-9.
  • Bertrandias, J. P., Datry, C., Dupuis, C., Unions et intersections d’espaces $L^p$ invariantes par translation ou convolution, Ann. Inst. Fourier, 28(2) (1978), 53-84. https://doi.org/10.5802/aif.689.
  • Busby, R. C., Smith, H. A., Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc., 263(2) (1981), 309-341. https://doi.org/10.1090/S0002-9947-1981-0594411-4.
  • Cohn, D. L., Measure Theory, Springer, New York, 2013.
  • Feichtinger, H. G., Banach spaces of distributions of Wiener’s type and interpolation, in: Functional Analysis and Approximation, Internat. Ser. Numer. Math., 60 (1980), Birkhäuser, Basel-Boston, 153–165, 1981.
  • Feichtinger, H. G., A characterization of minimal homogeneous Banach spaces, Proc. Amer. Math. Soc., 81(1) (1981), 55–61. https://doi.org/10.1090/s0002-9939-1981-0589135-9.
  • Feichtinger, H. G., Banach convolution algebras of Wiener type, in: Proc. Conf. on Functions, Series, Operators, Colloq. Math. Soc. János Bolyai, Budapest 38 (1980), North-Holland, 509–524, 1983.
  • Heil, C., An introduction to weighted Wiener amalgams, in: Krishna, M., Radha, R. and Thangavelu, S., Eds., Wavelets and Their Applications, Allied Publishers, New Delhi, 183-216, 2003.
  • Holland, F., Harmonic analysis on amalgams of $L^p$ and $\ell^q$, J. London Math. Soc., 2(10) (1975), 295-305. https://doi.org/10.1112/jlms/s2-10.3.295.
  • Öztop, S., Tabatabaie, S. M., Weighted Orlicz algebras on hypergroups, Filomat, 34(9) (2020), 2991-3002. https://doi.org/10.2298/FIL2009991O.
  • Rao, M. M., Extensions of the Hausdorff-Young theorem, Israel J. Math., 6 (1967), 133-149. https://doi.org/10.1007/BF02760179.
  • Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  • Rao, M. M., Ren, Z. D., Application of Orlicz Spaces, Marcel Dekker, New York, 2002.
  • Sawano, Y., Tabatabaie, S. M., Inclusions in generalized Orlicz spaces, Bull. Iran. Math. Soc., 47 (2021), 1227–1233. https://doi.org/10.1007/s41980-020-00437-y.
  • Tabatabaie, S. M., Bagheri Salec, A. R., On the inclusions of $X^{\Phi}$ spaces, Mathematica Bohemica, 148 (2023), 65-72. https://doi.org/10.21136/MB.2022.0064-21.
  • Torrès de Squire, M., Multipliers for amalgams and the algebra $S_0 (G)$, Can. J. Math., 39(1) (1987), 123-148. https://doi.org/10.4153/CJM-1987-007-7.
  • Wiener, N., On the representation of functions by trigonometric integrals, Math. Z., 24 (1926), 575–616.
There are 19 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis
Journal Section Research Article
Authors

Büşra Arıs 0000-0002-4699-4122

Submission Date January 12, 2025
Acceptance Date June 11, 2025
Publication Date December 24, 2025
Published in Issue Year 2025 Volume: 74 Issue: 4

Cite

APA Arıs, B. (2025). Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 74(4), 701-708. https://doi.org/10.31801/cfsuasmas.1618568
AMA Arıs B. Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2025;74(4):701-708. doi:10.31801/cfsuasmas.1618568
Chicago Arıs, Büşra. “Inclusions Between Orlicz Amalgam Spaces on $\mathbb{R}^n$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74, no. 4 (December 2025): 701-8. https://doi.org/10.31801/cfsuasmas.1618568.
EndNote Arıs B (December 1, 2025) Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74 4 701–708.
IEEE B. Arıs, “Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 74, no. 4, pp. 701–708, 2025, doi: 10.31801/cfsuasmas.1618568.
ISNAD Arıs, Büşra. “Inclusions Between Orlicz Amalgam Spaces on $\mathbb{R}^n$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 74/4 (December2025), 701-708. https://doi.org/10.31801/cfsuasmas.1618568.
JAMA Arıs B. Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74:701–708.
MLA Arıs, Büşra. “Inclusions Between Orlicz Amalgam Spaces on $\mathbb{R}^n$”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 74, no. 4, 2025, pp. 701-8, doi:10.31801/cfsuasmas.1618568.
Vancouver Arıs B. Inclusions between Orlicz amalgam spaces on $\mathbb{R}^n$. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2025;74(4):701-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.