Research Article
BibTex RIS Cite

Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings

Year 2019, Volume: 68 Issue: 2, 1543 - 1555, 01.08.2019
https://doi.org/10.31801/cfsuasmas.422991
https://izlik.org/JA49RL55ZX

Abstract

In this paper, a general identity involving a di¤erentiable mapping is established. By using mathematical analysis, Hölder inequality and some auxiliary results, new generalized Hermite Hadamard type inequalities for differentiable harmonically-convex functions are established. It is expected that the results established in this paper contain previously established results asspecial cases.

References

  • Chen, F. X. and Wu, S. H., Some Hermite-Hadamard type inequalities for harmonically κ-convex functions, The Scientific World Journal, 2014 (2014), Article ID 279158.
  • Chen, F. and Wu, S., Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math. 2014 (2014), Article ID 386806, 6 pages.
  • He, C. -Y., Wang, Y., Xi, B. -Y. and Qi, F., Hermite--Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions, J. Nonlinear Sci. Appl., 10 (2017) 205--214.
  • Hölder, O., Über einen Mittelwerthssatz , Götting Nachr. (1889), 38-47.
  • Hadamard, J., Étude sur les Propriétés des Fonctions Entières en Particulier d'une Fonction Considérée par Riemann. Journal de Mathématique Pures et Appliquées, 58, 171-215.
  • Hermite, Ch., Sur deux limites d'une integrale define, Mathesis 3 (1883) 82.
  • İscan, İ., Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43 (6) (2014) 935-942.
  • İscan, İ. and Wu, S., Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Applied Mathematics and Computation, 238 (2014) 237-244.
  • Jensen, J. L. W. V., Sur les fonctions convexes et les inégalités entre les voleurs mogernmes, Acta. Math., 30 (1906), 175-193.
  • Latif, M. A., Dragomir, S. S. and Momoniat, E., Fejér type inequalities for harmonically-convex functions with applications, Journal of Applied Analysis and Computation, (Accepted)
  • Latif, M. A., Dragomir, S. S. and Momoniat, E., Some Fejér type inequalities for harmonically-convex functions with applications to special means, International Journal of Analysis and Applications, 13 (1) (2017) 1-14.
  • Noor, M. A., Noor, K. I. and Iftikhar, S., Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct., 7 (2016) 99-113.
  • Aslam Noor, M., Inayat Noor, K. and Iftikhar, S., Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9 (1) (2016) 7-16.
  • Awan, M. U., Aslam Noor, M. M., Mihai, V. and Inayat Noor, K., Inequalities via harmonic convex functions: conformable fractional calculus approach, J. Math. Inequal., 12 (1) (2018) 143-153.
  • Stolz, O., Grundzüge der Differential und Integralrechnung, Leipzig, Vol. 1, (1893), 35--36.
  • Wang, W., İscan, İ. and Zhou, H., Fractional integral inequalities of Hermite-Hadamard type for m-HH convex functions with applications, Advanced Studies in Contemporary Mathematics (Kyungshang), 26 (3) (2016) 501-512.
  • Wang, W. and Qi, J., Some new estimates of Hermite-Hadamard inequalities for harmonically convex functions with applications, International Journal of Analysis and Applications, 13 (1) (2017) 15-21.
  • Zhang, T. -Y. and Qi, Feng, Integral inequalities of Hermite-Hadamard type for m-AH convex functions, Turkish Journal of Analysis and Number Theory, 3 (2) (2014) 60-64.

Year 2019, Volume: 68 Issue: 2, 1543 - 1555, 01.08.2019
https://doi.org/10.31801/cfsuasmas.422991
https://izlik.org/JA49RL55ZX

Abstract

References

  • Chen, F. X. and Wu, S. H., Some Hermite-Hadamard type inequalities for harmonically κ-convex functions, The Scientific World Journal, 2014 (2014), Article ID 279158.
  • Chen, F. and Wu, S., Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math. 2014 (2014), Article ID 386806, 6 pages.
  • He, C. -Y., Wang, Y., Xi, B. -Y. and Qi, F., Hermite--Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions, J. Nonlinear Sci. Appl., 10 (2017) 205--214.
  • Hölder, O., Über einen Mittelwerthssatz , Götting Nachr. (1889), 38-47.
  • Hadamard, J., Étude sur les Propriétés des Fonctions Entières en Particulier d'une Fonction Considérée par Riemann. Journal de Mathématique Pures et Appliquées, 58, 171-215.
  • Hermite, Ch., Sur deux limites d'une integrale define, Mathesis 3 (1883) 82.
  • İscan, İ., Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43 (6) (2014) 935-942.
  • İscan, İ. and Wu, S., Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Applied Mathematics and Computation, 238 (2014) 237-244.
  • Jensen, J. L. W. V., Sur les fonctions convexes et les inégalités entre les voleurs mogernmes, Acta. Math., 30 (1906), 175-193.
  • Latif, M. A., Dragomir, S. S. and Momoniat, E., Fejér type inequalities for harmonically-convex functions with applications, Journal of Applied Analysis and Computation, (Accepted)
  • Latif, M. A., Dragomir, S. S. and Momoniat, E., Some Fejér type inequalities for harmonically-convex functions with applications to special means, International Journal of Analysis and Applications, 13 (1) (2017) 1-14.
  • Noor, M. A., Noor, K. I. and Iftikhar, S., Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct., 7 (2016) 99-113.
  • Aslam Noor, M., Inayat Noor, K. and Iftikhar, S., Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9 (1) (2016) 7-16.
  • Awan, M. U., Aslam Noor, M. M., Mihai, V. and Inayat Noor, K., Inequalities via harmonic convex functions: conformable fractional calculus approach, J. Math. Inequal., 12 (1) (2018) 143-153.
  • Stolz, O., Grundzüge der Differential und Integralrechnung, Leipzig, Vol. 1, (1893), 35--36.
  • Wang, W., İscan, İ. and Zhou, H., Fractional integral inequalities of Hermite-Hadamard type for m-HH convex functions with applications, Advanced Studies in Contemporary Mathematics (Kyungshang), 26 (3) (2016) 501-512.
  • Wang, W. and Qi, J., Some new estimates of Hermite-Hadamard inequalities for harmonically convex functions with applications, International Journal of Analysis and Applications, 13 (1) (2017) 15-21.
  • Zhang, T. -Y. and Qi, Feng, Integral inequalities of Hermite-Hadamard type for m-AH convex functions, Turkish Journal of Analysis and Number Theory, 3 (2) (2014) 60-64.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Muhammad Amer Latif 0000-0003-2349-3445

Sabir Hussain

Submission Date May 11, 2018
Acceptance Date October 12, 2018
Publication Date August 1, 2019
DOI https://doi.org/10.31801/cfsuasmas.422991
IZ https://izlik.org/JA49RL55ZX
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Latif, M. A., & Hussain, S. (2019). Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1543-1555. https://doi.org/10.31801/cfsuasmas.422991
AMA 1.Latif MA, Hussain S. Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1543-1555. doi:10.31801/cfsuasmas.422991
Chicago Latif, Muhammad Amer, and Sabir Hussain. 2019. “Some Generalized Hermite-Hadamard Type Inequalities by Using the Harmonic Convexity of Differentiable Mappings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (2): 1543-55. https://doi.org/10.31801/cfsuasmas.422991.
EndNote Latif MA, Hussain S (August 1, 2019) Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1543–1555.
IEEE [1]M. A. Latif and S. Hussain, “Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1543–1555, Aug. 2019, doi: 10.31801/cfsuasmas.422991.
ISNAD Latif, Muhammad Amer - Hussain, Sabir. “Some Generalized Hermite-Hadamard Type Inequalities by Using the Harmonic Convexity of Differentiable Mappings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 1, 2019): 1543-1555. https://doi.org/10.31801/cfsuasmas.422991.
JAMA 1.Latif MA, Hussain S. Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1543–1555.
MLA Latif, Muhammad Amer, and Sabir Hussain. “Some Generalized Hermite-Hadamard Type Inequalities by Using the Harmonic Convexity of Differentiable Mappings”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, Aug. 2019, pp. 1543-55, doi:10.31801/cfsuasmas.422991.
Vancouver 1.Latif MA, Hussain S. Some generalized Hermite-Hadamard type inequalities by using the harmonic convexity of differentiable mappings. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. [Internet]. 2019 Aug. 1;68(2):1543-55. Available from: https://izlik.org/JA49RL55ZX

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.