The aim of this paper is to study the -Ricci solitons in 3-dimensionaltrans-Sasakian manifolds
References
Blaga, A. M., Ricci solitons on para-Kenmotsu manifolds, arXiv:1402, 0223v1, [math DG]
Cecil, T. E. and P. J. Ryan, Focal sets and real htpersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
Cho, J. T. and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form, Tohoku math.J., 61(2009), 205-212.
Gray, A. and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
Hamilton, R. S., The Ricci *ow on surfaces, Mathematical and general relativity(Santa Cruz,CA,1986), American Math. Soc., Contemp. Math., 71(1988), 237-262.
Ki, U-H., Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukaba J. Math. 13(1989), 73-81.
Marrero, J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) (1992), 77-86.
Mishra, R. S., Almost contact metric manifolds, Monograph, 1, Tensor Soc. India, Lucknow, Montiel, S., Real hypersurfaces of complex hyperbolic space, J.Math.Soc. Japan 35(1985), 535.
Nagaraja, H. G. and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical analysis, 3(2)(2012), 18-24.
Oubiña, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no.3-4, 187 - 193.
Prakasha, D. G. and B. S. Hadimani,-Ricci solitons on para-Sasakian manifolds, J. Geom., DOI 10.1007/s00022-016-0345-z.
Sharma, R., Certain results on K-contact and (k; ) -contact manifolds, J.Geom., 89(2008), 147.
Tripathi, M. M., Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG]
Current address : Venu K and H. G. Nagaraja: Department of Mathematics, Bangalore Uni- versity, Bengaluru-560056, INDIA
Blaga, A. M., Ricci solitons on para-Kenmotsu manifolds, arXiv:1402, 0223v1, [math DG]
Cecil, T. E. and P. J. Ryan, Focal sets and real htpersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
Cho, J. T. and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form, Tohoku math.J., 61(2009), 205-212.
Gray, A. and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
Hamilton, R. S., The Ricci *ow on surfaces, Mathematical and general relativity(Santa Cruz,CA,1986), American Math. Soc., Contemp. Math., 71(1988), 237-262.
Ki, U-H., Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukaba J. Math. 13(1989), 73-81.
Marrero, J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) (1992), 77-86.
Mishra, R. S., Almost contact metric manifolds, Monograph, 1, Tensor Soc. India, Lucknow, Montiel, S., Real hypersurfaces of complex hyperbolic space, J.Math.Soc. Japan 35(1985), 535.
Nagaraja, H. G. and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, Journal of Mathematical analysis, 3(2)(2012), 18-24.
Oubiña, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no.3-4, 187 - 193.
Prakasha, D. G. and B. S. Hadimani,-Ricci solitons on para-Sasakian manifolds, J. Geom., DOI 10.1007/s00022-016-0345-z.
Sharma, R., Certain results on K-contact and (k; ) -contact manifolds, J.Geom., 89(2008), 147.
Tripathi, M. M., Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [math DG]
Current address : Venu K and H. G. Nagaraja: Department of Mathematics, Bangalore Uni- versity, Bengaluru-560056, INDIA
Venu, K., & Nagaraja H., G. (2017). η-Ricci solitons in trans-Sasakian manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(2), 218-224. https://doi.org/10.1501/Commua1_0000000813
AMA
Venu K, Nagaraja H. G. η-Ricci solitons in trans-Sasakian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2017;66(2):218-224. doi:10.1501/Commua1_0000000813
Chicago
Venu, K., and G. Nagaraja H. “η-Ricci Solitons in Trans-Sasakian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, no. 2 (August 2017): 218-24. https://doi.org/10.1501/Commua1_0000000813.
EndNote
Venu K, Nagaraja H. G (August 1, 2017) η-Ricci solitons in trans-Sasakian manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 2 218–224.
IEEE
K. Venu and G. Nagaraja H., “η-Ricci solitons in trans-Sasakian manifolds”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 66, no. 2, pp. 218–224, 2017, doi: 10.1501/Commua1_0000000813.
ISNAD
Venu, K. - Nagaraja H., G. “η-Ricci Solitons in Trans-Sasakian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/2 (August 2017), 218-224. https://doi.org/10.1501/Commua1_0000000813.
JAMA
Venu K, Nagaraja H. G. η-Ricci solitons in trans-Sasakian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:218–224.
MLA
Venu, K. and G. Nagaraja H. “η-Ricci Solitons in Trans-Sasakian Manifolds”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 66, no. 2, 2017, pp. 218-24, doi:10.1501/Commua1_0000000813.
Vancouver
Venu K, Nagaraja H. G. η-Ricci solitons in trans-Sasakian manifolds. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(2):218-24.