BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 38 - 49, 01.08.2018

Abstract

References

  • Fontes, F. G. and Solís, F. J., Iterating the Cesàro Operators, Proc. Amer. Math. Soc. 136(6), –2153 (2008).
  • González, M. and León-Saavedra, F., Cyclic behavior of the Cesàro operator on L2(0; 1), Proc. Amer. Math. Soc. 137(6), 2049–2055 (2009).
  • Arvanitidis, A. G. and Siskakis, A. G., Cesàro Operators on the Hardy Spaces of the Half- Plane, Canad. Math. Bull. 56, 229–240 (2013).
  • Albanese, A. A., Bonet J. and Ricker, W. J., On the continuous Cesàro operator in certain function spaces, Positivity 19, 659–679 (2015).
  • Lacruz, M., León-Saavedra F., Petrovic, S. and Zabeti, O., Extended eigenvalues for Cesàro operators, J. Math. Anal. Appl. 429, 623–657 (2015).
  • Titchmarsh, E. C., Introduction to the theory of Fourier integrals, Clarendon Press, Oxford (1937).
  • Hardy, G. H., Divergent series. Oxford Univ. Press, Oxford (1949).
  • Korevaar, J., Tauberian Theory: A Century of Developments. Springer-Verlag, Berlin (2004).
  • Móricz, F. and Németh, Z., Tauberian conditions under which convergence of integrals follows from summability (C; 1) over R+. Anal. Math. 26, 53–61 (2000).
  • Çanak, ·I. and Totur, Ü., A Tauberian theorem for Cesàro summability of integrals, Appl. Math. Lett. 24, 391–395 (2011).
  • Çanak, ·I. and Totur, Ü., Tauberian conditions for Cesàro summability of integrals. Appl. Math. Lett. 24, 891–896 (2011).
  • Totur, Ü. and Çanak, ·I., One-sided Tauberian conditions for (C,1) summability method of integrals, Math. Comput. Model. 55, 1813–1818 (2012).
  • Çanak, ·I. and Totur, Ü., Alternative proofs of some classical type Tauberian theorems for Cesàro summability of integrals, Math. Comput. Model. 55(3), 1558–1561 (2012).
  • Totur, Ü. and Çanak, ·I., On Tauberian conditions for (C,1) summability of integrals, Revista de la Unión Matemática Argentina 54(2), 59–65 (2013).
  • Totur, Ü. and Çanak, ·I., On the (C,1) summability method of improper integrals, Appl. Math. Comput. 219(24), 11065–11070 (2013).
  • Giang, D. V. and Móricz, F., The strong summability of Fourier transforms, Acta Math. Hungar. 65(4), 403–419 (1994).
  • Móricz, F., Strong Cesàro summability and statistical limit of double Fourier integrals, Acta Sci. Math. (Szeged) 71, 159–174 (2005).
  • Brown, G., Feng D. and Móricz, F., Strong Cesàro Summability of Double Fourier Integrals, Acta Math. Hungar. 115(1-2), 1–12 (2007).
  • Mishra, V. N., Khatri K. and Mishra, L. N., Strong Cesàro Summability of Triple Fourier Integrals, Fasc. Math. 53, 95–112 (2014).
  • Dubois, D. and Prade, H., Towards fuzzy diğerential calculus, Fuzzy Set and Syt. 8, 1–7, –116, 225–233 (1982).
  • Wu, H., The improper fuzzy Riemann integral and its numerical integration, Inform. Sciences (1–4), 109–137 (1998).
  • Anastassiou, G. A., Fuzzy Mathematics: Approximation Theory. Springer-Verlag, Berlin (2010).
  • Gong, Z. and Wang, L., The Henstock-Stieltjes integral for fuzzy-number-valued functions, Inform. Sciences 188, 276–297 (2012).
  • Ren, X. and Wu, C., The Fuzzy Riemann-Stieltjes Integral, Int. J. Theor. Phys. 52, 2134– (2013).
  • Bede, B. and Gal, S. G., Almost periodic fuzzy-number-valued functions, Fuzzy Set Syt. 147, –403 (2004).
  • Zadeh, L. A., Fuzzy sets, Inform. Control 8, 29–44 (1965).
  • Talo, Ö. and Ba¸sar, F., Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Comput. Math. Appl. 58(4), 717–733 (2009).
  • Aytar, S. Mammadov, M. and Pehlivan, S., Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Set Syt, 157(7), 976–985 (2006).
  • Aytar, S. and Pehlivan, S., Statistical cluster and extreme limit points of sequences of fuzzy numbers, Inform. Sci. 177(16), 3290–3296 (2007).
  • Li, H. and C. Wu, The integral of a fuzzy mapping over a directed line, Fuzzy Set Syt 158, –2338 (2007).
  • Talo, Ö. and Ba¸sar, F., On the Slowly Decreasing Sequences of Fuzzy Numbers, Abstr. Appl. Anal. 2013, 1–7 (2013).
  • Goetschel, R. and Voxman, W., Elementary fuzzy calculus, Fuzzy Set Syt 18, 31–43 (1986).

CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS

Year 2018, Volume: 67 Issue: 2, 38 - 49, 01.08.2018

Abstract

In the present study, we have introduced Cesàro summability ofintegrals of fuzzy-number-valued functions and given one-sided Tauberian conditions under which convergence of improper fuzzy Riemann integrals followsfrom Cesàro summability. Also, fuzzy analogues of Schmidt type slow decreaseand Landau type one-sided Tauberian conditions have been obtained

References

  • Fontes, F. G. and Solís, F. J., Iterating the Cesàro Operators, Proc. Amer. Math. Soc. 136(6), –2153 (2008).
  • González, M. and León-Saavedra, F., Cyclic behavior of the Cesàro operator on L2(0; 1), Proc. Amer. Math. Soc. 137(6), 2049–2055 (2009).
  • Arvanitidis, A. G. and Siskakis, A. G., Cesàro Operators on the Hardy Spaces of the Half- Plane, Canad. Math. Bull. 56, 229–240 (2013).
  • Albanese, A. A., Bonet J. and Ricker, W. J., On the continuous Cesàro operator in certain function spaces, Positivity 19, 659–679 (2015).
  • Lacruz, M., León-Saavedra F., Petrovic, S. and Zabeti, O., Extended eigenvalues for Cesàro operators, J. Math. Anal. Appl. 429, 623–657 (2015).
  • Titchmarsh, E. C., Introduction to the theory of Fourier integrals, Clarendon Press, Oxford (1937).
  • Hardy, G. H., Divergent series. Oxford Univ. Press, Oxford (1949).
  • Korevaar, J., Tauberian Theory: A Century of Developments. Springer-Verlag, Berlin (2004).
  • Móricz, F. and Németh, Z., Tauberian conditions under which convergence of integrals follows from summability (C; 1) over R+. Anal. Math. 26, 53–61 (2000).
  • Çanak, ·I. and Totur, Ü., A Tauberian theorem for Cesàro summability of integrals, Appl. Math. Lett. 24, 391–395 (2011).
  • Çanak, ·I. and Totur, Ü., Tauberian conditions for Cesàro summability of integrals. Appl. Math. Lett. 24, 891–896 (2011).
  • Totur, Ü. and Çanak, ·I., One-sided Tauberian conditions for (C,1) summability method of integrals, Math. Comput. Model. 55, 1813–1818 (2012).
  • Çanak, ·I. and Totur, Ü., Alternative proofs of some classical type Tauberian theorems for Cesàro summability of integrals, Math. Comput. Model. 55(3), 1558–1561 (2012).
  • Totur, Ü. and Çanak, ·I., On Tauberian conditions for (C,1) summability of integrals, Revista de la Unión Matemática Argentina 54(2), 59–65 (2013).
  • Totur, Ü. and Çanak, ·I., On the (C,1) summability method of improper integrals, Appl. Math. Comput. 219(24), 11065–11070 (2013).
  • Giang, D. V. and Móricz, F., The strong summability of Fourier transforms, Acta Math. Hungar. 65(4), 403–419 (1994).
  • Móricz, F., Strong Cesàro summability and statistical limit of double Fourier integrals, Acta Sci. Math. (Szeged) 71, 159–174 (2005).
  • Brown, G., Feng D. and Móricz, F., Strong Cesàro Summability of Double Fourier Integrals, Acta Math. Hungar. 115(1-2), 1–12 (2007).
  • Mishra, V. N., Khatri K. and Mishra, L. N., Strong Cesàro Summability of Triple Fourier Integrals, Fasc. Math. 53, 95–112 (2014).
  • Dubois, D. and Prade, H., Towards fuzzy diğerential calculus, Fuzzy Set and Syt. 8, 1–7, –116, 225–233 (1982).
  • Wu, H., The improper fuzzy Riemann integral and its numerical integration, Inform. Sciences (1–4), 109–137 (1998).
  • Anastassiou, G. A., Fuzzy Mathematics: Approximation Theory. Springer-Verlag, Berlin (2010).
  • Gong, Z. and Wang, L., The Henstock-Stieltjes integral for fuzzy-number-valued functions, Inform. Sciences 188, 276–297 (2012).
  • Ren, X. and Wu, C., The Fuzzy Riemann-Stieltjes Integral, Int. J. Theor. Phys. 52, 2134– (2013).
  • Bede, B. and Gal, S. G., Almost periodic fuzzy-number-valued functions, Fuzzy Set Syt. 147, –403 (2004).
  • Zadeh, L. A., Fuzzy sets, Inform. Control 8, 29–44 (1965).
  • Talo, Ö. and Ba¸sar, F., Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Comput. Math. Appl. 58(4), 717–733 (2009).
  • Aytar, S. Mammadov, M. and Pehlivan, S., Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Set Syt, 157(7), 976–985 (2006).
  • Aytar, S. and Pehlivan, S., Statistical cluster and extreme limit points of sequences of fuzzy numbers, Inform. Sci. 177(16), 3290–3296 (2007).
  • Li, H. and C. Wu, The integral of a fuzzy mapping over a directed line, Fuzzy Set Syt 158, –2338 (2007).
  • Talo, Ö. and Ba¸sar, F., On the Slowly Decreasing Sequences of Fuzzy Numbers, Abstr. Appl. Anal. 2013, 1–7 (2013).
  • Goetschel, R. and Voxman, W., Elementary fuzzy calculus, Fuzzy Set Syt 18, 31–43 (1986).
There are 32 citations in total.

Details

Other ID JA53GU28KR
Journal Section Research Article
Authors

Enes Yavuz This is me

Özer Talo This is me

Hüsamettin Coşkun This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Yavuz, E., Talo, Ö., & Coşkun, H. (2018). CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 38-49.
AMA Yavuz E, Talo Ö, Coşkun H. CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):38-49.
Chicago Yavuz, Enes, Özer Talo, and Hüsamettin Coşkun. “CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 38-49.
EndNote Yavuz E, Talo Ö, Coşkun H (August 1, 2018) CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 38–49.
IEEE E. Yavuz, Ö. Talo, and H. Coşkun, “CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 38–49, 2018.
ISNAD Yavuz, Enes et al. “CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 38-49.
JAMA Yavuz E, Talo Ö, Coşkun H. CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:38–49.
MLA Yavuz, Enes et al. “CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 38-49.
Vancouver Yavuz E, Talo Ö, Coşkun H. CESÀRO SUMMABILITY OF INTEGRALS OF FUZZY-NUMBER-VALUED FUNCTIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):38-49.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.