Research Article
BibTex RIS Cite

Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent

Year 2019, Volume: 68 Issue: 2, 2014 - 2025, 01.08.2019
https://doi.org/10.31801/cfsuasmas.460449

Abstract

We investigate the approximation properties of Nörlund and Riesz means of trigonometric Fourier series are investigated in the subset of weighted Lebesgue space with variable exponent.

Supporting Institution

TUBITAK

Project Number

114F422

References

  • Akgun R., Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth, Georgian Math. Journal 18, (2011), 203-235.
  • Akgun R. and Kokilashvili V., The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue space, Georgian Mathematical Journal 18, No: 3, (2011), 399-423.
  • Cruz-Uribe, D. V. and Fiorenza, A., Variable Lebesgue Spaces Foundation and Harmonic Analysis. Birkhäsuser, 2013
  • Diening L, Harjulehto P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg Dordrecht London New York; 2011.
  • Sharapudinov, I. I, Some questions of approximation theory in the Lebesgue spaces with variable exponent , Viladikavkaz, 2012.
  • Timan A. F., Theory of Approximation of Functions of a Real Variable:New York : Macmillan, 1963.
  • Cruz-Uribe D. V., Diening L., Hästö P., The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus and Applied Analysis 14, No 3, (2011), 361-374.
  • Quade E. S., Trigonometric approximation in the mean. Duke Math. J. 3 (1937), No. 3, 529--543.
  • R.N. Mohapatra R. N., Russell D. C., Some direct and inverse theorems in approximation of functions, J. Austral. Math. Soc. (Ser. A) 34 (1983), 143-154.
  • Chandra P., A note on degree of approximation by Nörlund and Riesz operators, Mat. Vesn. 42, (1990), 9-10.
  • Chandra P., Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl. 275, Issue 1, (2002), 13-26.
  • Leindler L., Trigonometric approximation in L_{p} -norm, Journal of Mathematical Analysis and Applications 302 (1), (2005), 129-136.
  • Guven A., Trigonometric Approximation Of Functions In Weighted L^{p }Spaces, Sarajevo Journal Of Mathematics 5 (17), (2009), 99-108.
  • Guven A., Approximation In Weighted L^{p} Space, Revista De La Unión Mathemática Argentina 53, No 1, (2012), 11-23.
  • Guven A. and Israfilov D. M., Trigonometric Approximation in Generalized Lebesgue Spaces L^{p(x)}, Journal of Math. Inequalities 4, No 2, (2010), 285-299.
  • Guven A., Trigonometric Approximation By Matrix Transforms in L^{p(x)} Space, Analysis and Applications 10, No 1, (2012), 47-65.
  • Israfilov D., Kokilashvili V., Samko S., Approximation In Weighted Lebesgue and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Institute 143, (2007), 25-35.
  • Israfilov, D. M. and Testici, A., Trigonometric Approximation by Matrix Transforms in Weighted Lebesgue Spaces with Variable Exponent, Results in Mathematics 73 : 8, Issue 1, (2018).
  • D. M. Israfilov and Ahmet Testici, Some Inverse Theorem of Approximation Theory in Weighted Lebesgue Space With Variable Exponent, Analysis Mathematica 44(4), (2018), 475-492.
  • Deger U., On Approximation By Nörlund and Riesz Submethods In Variable Exponent Lebesgue Spaces, Commun.Fac.Sci.Univ.Ank.Series A1 67, No 1, (2018), 46-59.
  • Yildirir Y. E. and Avsar A. H, Approximation of periodic functions in weighted Lorentz spaces, Sarajevo Journal Of Mathematics 13 (25), (2017), 49-60.
Year 2019, Volume: 68 Issue: 2, 2014 - 2025, 01.08.2019
https://doi.org/10.31801/cfsuasmas.460449

Abstract

Project Number

114F422

References

  • Akgun R., Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth, Georgian Math. Journal 18, (2011), 203-235.
  • Akgun R. and Kokilashvili V., The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue space, Georgian Mathematical Journal 18, No: 3, (2011), 399-423.
  • Cruz-Uribe, D. V. and Fiorenza, A., Variable Lebesgue Spaces Foundation and Harmonic Analysis. Birkhäsuser, 2013
  • Diening L, Harjulehto P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg Dordrecht London New York; 2011.
  • Sharapudinov, I. I, Some questions of approximation theory in the Lebesgue spaces with variable exponent , Viladikavkaz, 2012.
  • Timan A. F., Theory of Approximation of Functions of a Real Variable:New York : Macmillan, 1963.
  • Cruz-Uribe D. V., Diening L., Hästö P., The maximal operator on weighted variable Lebesgue spaces, Fractional Calculus and Applied Analysis 14, No 3, (2011), 361-374.
  • Quade E. S., Trigonometric approximation in the mean. Duke Math. J. 3 (1937), No. 3, 529--543.
  • R.N. Mohapatra R. N., Russell D. C., Some direct and inverse theorems in approximation of functions, J. Austral. Math. Soc. (Ser. A) 34 (1983), 143-154.
  • Chandra P., A note on degree of approximation by Nörlund and Riesz operators, Mat. Vesn. 42, (1990), 9-10.
  • Chandra P., Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl. 275, Issue 1, (2002), 13-26.
  • Leindler L., Trigonometric approximation in L_{p} -norm, Journal of Mathematical Analysis and Applications 302 (1), (2005), 129-136.
  • Guven A., Trigonometric Approximation Of Functions In Weighted L^{p }Spaces, Sarajevo Journal Of Mathematics 5 (17), (2009), 99-108.
  • Guven A., Approximation In Weighted L^{p} Space, Revista De La Unión Mathemática Argentina 53, No 1, (2012), 11-23.
  • Guven A. and Israfilov D. M., Trigonometric Approximation in Generalized Lebesgue Spaces L^{p(x)}, Journal of Math. Inequalities 4, No 2, (2010), 285-299.
  • Guven A., Trigonometric Approximation By Matrix Transforms in L^{p(x)} Space, Analysis and Applications 10, No 1, (2012), 47-65.
  • Israfilov D., Kokilashvili V., Samko S., Approximation In Weighted Lebesgue and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Institute 143, (2007), 25-35.
  • Israfilov, D. M. and Testici, A., Trigonometric Approximation by Matrix Transforms in Weighted Lebesgue Spaces with Variable Exponent, Results in Mathematics 73 : 8, Issue 1, (2018).
  • D. M. Israfilov and Ahmet Testici, Some Inverse Theorem of Approximation Theory in Weighted Lebesgue Space With Variable Exponent, Analysis Mathematica 44(4), (2018), 475-492.
  • Deger U., On Approximation By Nörlund and Riesz Submethods In Variable Exponent Lebesgue Spaces, Commun.Fac.Sci.Univ.Ank.Series A1 67, No 1, (2018), 46-59.
  • Yildirir Y. E. and Avsar A. H, Approximation of periodic functions in weighted Lorentz spaces, Sarajevo Journal Of Mathematics 13 (25), (2017), 49-60.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ahmet Testici 0000-0002-1163-7037

Project Number 114F422
Publication Date August 1, 2019
Submission Date September 17, 2018
Acceptance Date April 19, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Testici, A. (2019). Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2014-2025. https://doi.org/10.31801/cfsuasmas.460449
AMA Testici A. Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2014-2025. doi:10.31801/cfsuasmas.460449
Chicago Testici, Ahmet. “Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space With Variable Exponent”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2014-25. https://doi.org/10.31801/cfsuasmas.460449.
EndNote Testici A (August 1, 2019) Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2014–2025.
IEEE A. Testici, “Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2014–2025, 2019, doi: 10.31801/cfsuasmas.460449.
ISNAD Testici, Ahmet. “Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space With Variable Exponent”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2014-2025. https://doi.org/10.31801/cfsuasmas.460449.
JAMA Testici A. Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2014–2025.
MLA Testici, Ahmet. “Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space With Variable Exponent”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2014-25, doi:10.31801/cfsuasmas.460449.
Vancouver Testici A. Approximation by Nörlund and Riesz means in weighted Lebesgue space with variable exponent. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2014-25.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.