In this paper; free quadratic modules and totally free ojects in the category of quadratic modules consructed over Lie algebras. We use the free quadratic modules of Lie algebras to show that the category quadratic module of lie algebras is a cofibration category by means of Baues.
André, M., Homologie des algébras commutatives, Springer-Verlag, Die Grundlehren der mathematicschen Wissenschaften in Einzeldarstellungen Band, 206, 1974.
Akça, I. and Arvasi, Z., Simplicial and crossed Lie algebras, Homology, Homotopy and Applications, Vol. 4 No.1, (2002) ,43-57.
Arvasi, Z., 2-crossed complexes and crossed resolutions of Lie algebras, Algebra, Groups and Geometry, Vol. 16,(1999), 452-479.
Baues, H.J., Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 1991.
Carrasco, P. and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
Conduché, D., Modules croisés g énéralisés de longueur 2, J. Pure and Applied Algebra , 34, (1984), 155-178.
André, M., Homologie des algébras commutatives, Springer-Verlag, Die Grundlehren der mathematicschen Wissenschaften in Einzeldarstellungen Band, 206, 1974.
Akça, I. and Arvasi, Z., Simplicial and crossed Lie algebras, Homology, Homotopy and Applications, Vol. 4 No.1, (2002) ,43-57.
Arvasi, Z., 2-crossed complexes and crossed resolutions of Lie algebras, Algebra, Groups and Geometry, Vol. 16,(1999), 452-479.
Baues, H.J., Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 1991.
Carrasco, P. and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
Conduché, D., Modules croisés g énéralisés de longueur 2, J. Pure and Applied Algebra , 34, (1984), 155-178.
Yılmaz, K., & Soylu Yılmaz, E. (2019). Baues cofibration for quadratic modules of Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1653-1663. https://doi.org/10.31801/cfsuasmas.468743
AMA
Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Ağustos 2019;68(2):1653-1663. doi:10.31801/cfsuasmas.468743
Chicago
Yılmaz, Koray, ve Elis Soylu Yılmaz. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, sy. 2 (Ağustos 2019): 1653-63. https://doi.org/10.31801/cfsuasmas.468743.
EndNote
Yılmaz K, Soylu Yılmaz E (01 Ağustos 2019) Baues cofibration for quadratic modules of Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1653–1663.
IEEE
K. Yılmaz ve E. Soylu Yılmaz, “Baues cofibration for quadratic modules of Lie algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 68, sy. 2, ss. 1653–1663, 2019, doi: 10.31801/cfsuasmas.468743.
ISNAD
Yılmaz, Koray - Soylu Yılmaz, Elis. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (Ağustos 2019), 1653-1663. https://doi.org/10.31801/cfsuasmas.468743.
JAMA
Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1653–1663.
MLA
Yılmaz, Koray ve Elis Soylu Yılmaz. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 68, sy. 2, 2019, ss. 1653-6, doi:10.31801/cfsuasmas.468743.
Vancouver
Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1653-6.