Research Article
BibTex RIS Cite
Year 2019, Volume: 68 Issue: 2, 2313 - 2323, 01.08.2019
https://doi.org/10.31801/cfsuasmas.558169

Abstract

References

  • Bernstein, S. N., Demonstration du theorem de Weierstrass fondee sur le calculu des probabilites,Comp. Comm. Soc. Mat. Charkow Ser., 13(2)(1912), 1-2.
  • Korovkin, P. P., On convergence of linear positive operators in the space of continuousfunctions, Dokl. Akad. Nauk, 90(1953), 961-964.
  • Kantorovich, L. V., Sur certains developments suivant les polynomes de la forms de S.Bernstein I, II, Dokal Akad Nauk SSSR, (1930) 595-600, 563-568.
  • Durrmeyer, J. L., Une formula d’invension de la transforms de Laplace-Appliction a’la theorie des moments, The’se de 3e cycle, Faculte’ des Sciences de I’Universite de Paris, (1967).
  • Izgi, A., Approximation by a class of new type Bernstein polynomials of one two variables,Global Journal of Pure and Applied Mathematics, 8(5) (2012), 55-71.
  • Cao, J. D., A generalization of the Bernstein Polynomials, J. Math. Analy. and Appl.Math., 122(2000) (1997), 1-21.
  • Lorentz, G. G., Bernstein polynomials, Chelsea, New York, (1986).
  • Gurdek, M., Rempulska, L. and Skorupka, M., The Baskakov operators for functions oftwo variables, Collect. Math., 50(3) (1999), 289–302.
  • Kahvecibasi, I., Approximation properties of the Bernstein-Kantorovich operators on theinterval [-1,1], Master of Science Thesis, Graduate School of Natural and Applied SciencesDepartment of Mathematic, Harran University, Sanlıurfa, Turkey.
  • Volkov, V. I., On the convergence of sequences of linear positive operators in the space oftwo variables, Dokl. Akad. Nauk. SSSR (N.S.), 115 (1957), 17-19.
  • Dirik, F. and Demirci, K., Korovkin type approximation theorem for functions of twovariables in statistical sense, Turk. J. Math., 34 (2010), 73–83.
  • Stancu, D. D., A method for obtaining polynomials of Bernstein type of two variables,Amer. Math. Monthly, 70(3) (1963), 260-264.
  • Gazanfer, A. K. and Büyükyazici, I., Approximation by certain linear positive operatorsof two variables, Hindawi Publishing Corporation Abstract and Applied Analysis, ID 782080,(2014).
  • Sahai, A., An iterative reduced-bias algorithm for a dual-fusion variant of Bernstein’soperator, Inter. Journal of Math. Arch., 2(3) (2011), 331-334.

Approximation properties of Bernstein-Kantorovich type operators of two variables

Year 2019, Volume: 68 Issue: 2, 2313 - 2323, 01.08.2019
https://doi.org/10.31801/cfsuasmas.558169

Abstract

In this study, the generalized Bernstein-Kantorovich type operators
are introduced and some approximation properties of these operators
are studied in the space of continuous functions of two variables on
a compact set . The convergence rate of these operators are obtained by
means of the modulus of continuity. The Voronovskaya type theorem is
given and some differential properties of these operators are proved.

References

  • Bernstein, S. N., Demonstration du theorem de Weierstrass fondee sur le calculu des probabilites,Comp. Comm. Soc. Mat. Charkow Ser., 13(2)(1912), 1-2.
  • Korovkin, P. P., On convergence of linear positive operators in the space of continuousfunctions, Dokl. Akad. Nauk, 90(1953), 961-964.
  • Kantorovich, L. V., Sur certains developments suivant les polynomes de la forms de S.Bernstein I, II, Dokal Akad Nauk SSSR, (1930) 595-600, 563-568.
  • Durrmeyer, J. L., Une formula d’invension de la transforms de Laplace-Appliction a’la theorie des moments, The’se de 3e cycle, Faculte’ des Sciences de I’Universite de Paris, (1967).
  • Izgi, A., Approximation by a class of new type Bernstein polynomials of one two variables,Global Journal of Pure and Applied Mathematics, 8(5) (2012), 55-71.
  • Cao, J. D., A generalization of the Bernstein Polynomials, J. Math. Analy. and Appl.Math., 122(2000) (1997), 1-21.
  • Lorentz, G. G., Bernstein polynomials, Chelsea, New York, (1986).
  • Gurdek, M., Rempulska, L. and Skorupka, M., The Baskakov operators for functions oftwo variables, Collect. Math., 50(3) (1999), 289–302.
  • Kahvecibasi, I., Approximation properties of the Bernstein-Kantorovich operators on theinterval [-1,1], Master of Science Thesis, Graduate School of Natural and Applied SciencesDepartment of Mathematic, Harran University, Sanlıurfa, Turkey.
  • Volkov, V. I., On the convergence of sequences of linear positive operators in the space oftwo variables, Dokl. Akad. Nauk. SSSR (N.S.), 115 (1957), 17-19.
  • Dirik, F. and Demirci, K., Korovkin type approximation theorem for functions of twovariables in statistical sense, Turk. J. Math., 34 (2010), 73–83.
  • Stancu, D. D., A method for obtaining polynomials of Bernstein type of two variables,Amer. Math. Monthly, 70(3) (1963), 260-264.
  • Gazanfer, A. K. and Büyükyazici, I., Approximation by certain linear positive operatorsof two variables, Hindawi Publishing Corporation Abstract and Applied Analysis, ID 782080,(2014).
  • Sahai, A., An iterative reduced-bias algorithm for a dual-fusion variant of Bernstein’soperator, Inter. Journal of Math. Arch., 2(3) (2011), 331-334.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Döne Karahan 0000-0001-6644-5596

Aydın İzgi 0000-0003-3715-8621

Publication Date August 1, 2019
Submission Date April 26, 2019
Acceptance Date July 9, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Karahan, D., & İzgi, A. (2019). Approximation properties of Bernstein-Kantorovich type operators of two variables. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2313-2323. https://doi.org/10.31801/cfsuasmas.558169
AMA Karahan D, İzgi A. Approximation properties of Bernstein-Kantorovich type operators of two variables. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2313-2323. doi:10.31801/cfsuasmas.558169
Chicago Karahan, Döne, and Aydın İzgi. “Approximation Properties of Bernstein-Kantorovich Type Operators of Two Variables”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2313-23. https://doi.org/10.31801/cfsuasmas.558169.
EndNote Karahan D, İzgi A (August 1, 2019) Approximation properties of Bernstein-Kantorovich type operators of two variables. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2313–2323.
IEEE D. Karahan and A. İzgi, “Approximation properties of Bernstein-Kantorovich type operators of two variables”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2313–2323, 2019, doi: 10.31801/cfsuasmas.558169.
ISNAD Karahan, Döne - İzgi, Aydın. “Approximation Properties of Bernstein-Kantorovich Type Operators of Two Variables”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2313-2323. https://doi.org/10.31801/cfsuasmas.558169.
JAMA Karahan D, İzgi A. Approximation properties of Bernstein-Kantorovich type operators of two variables. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2313–2323.
MLA Karahan, Döne and Aydın İzgi. “Approximation Properties of Bernstein-Kantorovich Type Operators of Two Variables”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2313-2, doi:10.31801/cfsuasmas.558169.
Vancouver Karahan D, İzgi A. Approximation properties of Bernstein-Kantorovich type operators of two variables. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2313-2.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.