Research Article
BibTex RIS Cite

Mean ergodic type theorems

Year 2019, Volume: 68 Issue: 2, 2264 - 2271, 01.08.2019
https://doi.org/10.31801/cfsuasmas.562214

Abstract

Let $T$ be a bounded linear operator on a Banach space $X$. Replacing the Ces\`{a}ro matrix by a regular matrix $A=(a_{nj})$ Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices $\mathcal{A}=(A^{(i)})$ that contains both convergence and almost convergence. This result also yields an $\mathcal{A}$-ergodic decomposition. When $T$ is power bounded we give a characterization for $T$ to be $\mathcal{A}$-ergodic.

References

  • Aleman, A. and Suciu, L., On ergodic operator means in Banach spaces, Integr. Equ. Oper.Theory 85, (2016), 259-287.
  • Bell, H.T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (3), (1973),
  • Cohen, L.W., On the mean ergodic theorem, Ann. Math. (3), 41, (1940), 505-509.
  • Krengel, U., Ergodic Theorems, de Gruyter Studies in Mathematics vol 6, Walter de Gruyter& Co., Berlin, 1985.
  • Lin, M., Shoikhet, D. and Suciu L., Remaks on uniform ergodic theorems, Acta Sci. Math.(Szeged) 81, (2015), 251-283.
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80, (1948),167-190.
  • Nanda, S., Ergodic theory and almost convergence, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie 26, (1982), 339-343.
  • Riesz, F., Some mean ergodic theorems, J. Lond. Math. Soc. 13, (1938), 274.
  • Stieglitz, M., Eine verallgen meinerung des Begris Fastkonvergenz, Math. Japon. 18, (1973),53-70.
  • von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA , 18,(1932), 70-82.
  • Yoshimoto, T., Ergodic theorems and summability methods, Quart. J. Math. 38 (3), (1987),367-379.
  • Yosida, K., Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo, 14, (1938),292-294.
Year 2019, Volume: 68 Issue: 2, 2264 - 2271, 01.08.2019
https://doi.org/10.31801/cfsuasmas.562214

Abstract

References

  • Aleman, A. and Suciu, L., On ergodic operator means in Banach spaces, Integr. Equ. Oper.Theory 85, (2016), 259-287.
  • Bell, H.T., Order summability and almost convergence, Proc. Amer. Math. Soc., 38 (3), (1973),
  • Cohen, L.W., On the mean ergodic theorem, Ann. Math. (3), 41, (1940), 505-509.
  • Krengel, U., Ergodic Theorems, de Gruyter Studies in Mathematics vol 6, Walter de Gruyter& Co., Berlin, 1985.
  • Lin, M., Shoikhet, D. and Suciu L., Remaks on uniform ergodic theorems, Acta Sci. Math.(Szeged) 81, (2015), 251-283.
  • Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80, (1948),167-190.
  • Nanda, S., Ergodic theory and almost convergence, Bull. Math, de la Soc. Sci. Math, de la R.S. de Roumanie 26, (1982), 339-343.
  • Riesz, F., Some mean ergodic theorems, J. Lond. Math. Soc. 13, (1938), 274.
  • Stieglitz, M., Eine verallgen meinerung des Begris Fastkonvergenz, Math. Japon. 18, (1973),53-70.
  • von Neumann, J., Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA , 18,(1932), 70-82.
  • Yoshimoto, T., Ergodic theorems and summability methods, Quart. J. Math. 38 (3), (1987),367-379.
  • Yosida, K., Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo, 14, (1938),292-294.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Gencay Oğuz 0000-0003-4077-1080

Cihan Orhan 0000-0002-3558-4945

Publication Date August 1, 2019
Submission Date May 9, 2019
Acceptance Date June 17, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Oğuz, G., & Orhan, C. (2019). Mean ergodic type theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2264-2271. https://doi.org/10.31801/cfsuasmas.562214
AMA Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2264-2271. doi:10.31801/cfsuasmas.562214
Chicago Oğuz, Gencay, and Cihan Orhan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2264-71. https://doi.org/10.31801/cfsuasmas.562214.
EndNote Oğuz G, Orhan C (August 1, 2019) Mean ergodic type theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2264–2271.
IEEE G. Oğuz and C. Orhan, “Mean ergodic type theorems”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2264–2271, 2019, doi: 10.31801/cfsuasmas.562214.
ISNAD Oğuz, Gencay - Orhan, Cihan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2264-2271. https://doi.org/10.31801/cfsuasmas.562214.
JAMA Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2264–2271.
MLA Oğuz, Gencay and Cihan Orhan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2264-71, doi:10.31801/cfsuasmas.562214.
Vancouver Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2264-71.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.