Let $T$ be a bounded linear operator on a Banach space $X$. Replacing the Ces\`{a}ro matrix by a regular matrix $A=(a_{nj})$ Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices $\mathcal{A}=(A^{(i)})$ that contains both convergence and almost convergence. This result also yields an $\mathcal{A}$-ergodic decomposition. When $T$ is power bounded we give a characterization for $T$ to be $\mathcal{A}$-ergodic.
Oğuz, G., & Orhan, C. (2019). Mean ergodic type theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2264-2271. https://doi.org/10.31801/cfsuasmas.562214
AMA
Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):2264-2271. doi:10.31801/cfsuasmas.562214
Chicago
Oğuz, Gencay, and Cihan Orhan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 2264-71. https://doi.org/10.31801/cfsuasmas.562214.
EndNote
Oğuz G, Orhan C (August 1, 2019) Mean ergodic type theorems. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 2264–2271.
IEEE
G. Oğuz and C. Orhan, “Mean ergodic type theorems”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 2264–2271, 2019, doi: 10.31801/cfsuasmas.562214.
ISNAD
Oğuz, Gencay - Orhan, Cihan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 2264-2271. https://doi.org/10.31801/cfsuasmas.562214.
JAMA
Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:2264–2271.
MLA
Oğuz, Gencay and Cihan Orhan. “Mean Ergodic Type Theorems”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 2264-71, doi:10.31801/cfsuasmas.562214.
Vancouver
Oğuz G, Orhan C. Mean ergodic type theorems. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):2264-71.