BibTex RIS Kaynak Göster

INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS.

Yıl 2011, Cilt: 60 Sayı: 1, 15 - 26, 01.02.2011
https://doi.org/10.1501/Commua1_0000000666

Öz

In this study, Sturm—Liouville problem with discontinuities in the
case when an eigenparameter linearly appears not only in the differential equation but it also appears in both of the boundary conditions is investigated.

Kaynakça

  • [1] B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).
  • [2] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A77 (1977), 293-308.
  • [3] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A87 (1980), 1-34.
  • [4] E. M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl. 9 (1975) 358—359.
  • [5] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems, 21(2005), 1315-1330.
  • [6] G. Freiling, V. Yurko, Inverse Sturm—Liouville Problems and their Applications, Nova Science, New York, 2001.
  • [7] H. Schmid and C. Tretter, Singular Dirac Systems and Sturm—Liouville Problems Nonlinear in the Spectral Parameter, Journal of Differential Equations, Volume 181, Issue 2, 20 May 2002, Pages 511-542.
  • [8] H. Weyl, Über gewohnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220—269.
Yıl 2011, Cilt: 60 Sayı: 1, 15 - 26, 01.02.2011
https://doi.org/10.1501/Commua1_0000000666

Öz

Kaynakça

  • [1] B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).
  • [2] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A77 (1977), 293-308.
  • [3] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, A87 (1980), 1-34.
  • [4] E. M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, Funct. Anal. Appl. 9 (1975) 358—359.
  • [5] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions, Inverse Problems, 21(2005), 1315-1330.
  • [6] G. Freiling, V. Yurko, Inverse Sturm—Liouville Problems and their Applications, Nova Science, New York, 2001.
  • [7] H. Schmid and C. Tretter, Singular Dirac Systems and Sturm—Liouville Problems Nonlinear in the Spectral Parameter, Journal of Differential Equations, Volume 181, Issue 2, 20 May 2002, Pages 511-542.
  • [8] H. Weyl, Über gewohnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220—269.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Baki Keskın Bu kişi benim

Sinan Ozkan A. Bu kişi benim

Numan Yalçın

Yayımlanma Tarihi 1 Şubat 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 60 Sayı: 1

Kaynak Göster

APA Keskın, B., Ozkan A., S., & Yalçın, N. (2011). INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 60(1), 15-26. https://doi.org/10.1501/Commua1_0000000666
AMA Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2011;60(1):15-26. doi:10.1501/Commua1_0000000666
Chicago Keskın, Baki, Sinan Ozkan A., ve Numan Yalçın. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60, sy. 1 (Şubat 2011): 15-26. https://doi.org/10.1501/Commua1_0000000666.
EndNote Keskın B, Ozkan A. S, Yalçın N (01 Şubat 2011) INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60 1 15–26.
IEEE B. Keskın, S. Ozkan A., ve N. Yalçın, “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”., Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 60, sy. 1, ss. 15–26, 2011, doi: 10.1501/Commua1_0000000666.
ISNAD Keskın, Baki vd. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 60/1 (Şubat 2011), 15-26. https://doi.org/10.1501/Commua1_0000000666.
JAMA Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60:15–26.
MLA Keskın, Baki vd. “INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 60, sy. 1, 2011, ss. 15-26, doi:10.1501/Commua1_0000000666.
Vancouver Keskın B, Ozkan A. S, Yalçın N. INVERSE SPECTRAL PROBLEMS FOR DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2011;60(1):15-26.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.