BibTex RIS Cite

ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE

Year 2016, Volume: 65 Issue: 2, 37 - 46, 01.08.2016
https://doi.org/10.1501/Commua1_0000000757

Abstract

The aim of this paper is to provide an alternative distance function
instead of Euclidean distance, which is very much used in navigation and
spherical trigonometry will contribute to advancement of logistics and optimal
facility location on spherical surfaces [8]. In this sense, we extend the polar
taxicab distance function defined in [7] to three dimesional analytical space

References

  • A. Bayar, R. Kaya, On A Taxicab Distance On A Sphere, MJMS,17(1) (2005), 41-51.
  • E. F. Krause, Taxicab Geometry, Addision-Wesley, Menlo Park, California (1975).
  • G. Chen, Lines and Circles in Taxicab Geometry, Master Thesis, Department of Mathematics and Computer Science, University of Central Missouri, 1992.
  • K. Menger, You Will Like Geometry, Guildbook of the Illinois Institute of Technology Geom- etry Exhibit, Museum of Science and Industry, Chicago, IL, 1952.
  • H. B. Çolako¼glu and R. Kaya, A Generalization of Some Well-Known Distances and Related Isometries, Math. Commun. Vol. 16 (2011), 21 - 35.
  • H. B.Colakoglu, Concerning the alpha distance, Algebras Groups Geom. 8 (2011),1-14.
  • H. G. Park, K. R. Kim, I. S. Ko, B. H. Kim, On Polar Taxicab Geometry In A Plane, J. Appl. Math. & Informatics, 32 (2014), 783-790.
  • J. J. Mwemezi, Y. Haung, Optimal Facilitiy Location On Spherical Surfaces: Algorithm And Application, New York Science Journal, 4(7) (2011), 21-28.
  • Ö. Geli¸sgen, R. Kaya, Alpha(i) Distance in n-dimensional Space, Applied Sciences, Vol.10 (2006), 88-93.
  • Ö. Geli¸sgen, R. Kaya, Generalization of Soc. Geom. Graph. 10 (2006), 33-35. distance to n dimensional space, KoG. Croat.
  • Ö. Geli¸sgen, R. Kaya, On Alpha-Distance in Three Dimensional Space, Applied Sciences, (2006), 65-69.
  • Ö. Geli¸sgen, R. Kaya, M. Özcan, Distance Formulae in Chinese Checker Space, IJPAM, (1) (2006), 35-44.
  • S. Tian, Alpha Distance-A Generalization of Chinese Checker Distance and Taxicab Dis- tance, Missouri Journal of Mathematical Sciences, 17(1) (2005), 35-40.
  • Z. Akça, R. Kaya, On the Distance Formulae In three Dimensional Taxicab Space, Hadronic Journal, 27 (2006), 521-532.
  • Current address : Temel ERM ·I¸S :Eskisehir Osmangazi University, Faculty of Art and Sciences, Deparment of Mathematics and Computer Sciences, 26480 Eskisehir, TURKEY
  • E-mail address : termis@ogu.edu.tr Current address : Özcan GEL·I¸SGEN: Eskisehir Osmangazi University, Faculty of Art and Sciences, Deparment of Mathematics and Computer Sciences, 26480 Eskisehir, TURKEY
  • E-mail address : gelisgen@ogu.edu.tr
Year 2016, Volume: 65 Issue: 2, 37 - 46, 01.08.2016
https://doi.org/10.1501/Commua1_0000000757

Abstract

References

  • A. Bayar, R. Kaya, On A Taxicab Distance On A Sphere, MJMS,17(1) (2005), 41-51.
  • E. F. Krause, Taxicab Geometry, Addision-Wesley, Menlo Park, California (1975).
  • G. Chen, Lines and Circles in Taxicab Geometry, Master Thesis, Department of Mathematics and Computer Science, University of Central Missouri, 1992.
  • K. Menger, You Will Like Geometry, Guildbook of the Illinois Institute of Technology Geom- etry Exhibit, Museum of Science and Industry, Chicago, IL, 1952.
  • H. B. Çolako¼glu and R. Kaya, A Generalization of Some Well-Known Distances and Related Isometries, Math. Commun. Vol. 16 (2011), 21 - 35.
  • H. B.Colakoglu, Concerning the alpha distance, Algebras Groups Geom. 8 (2011),1-14.
  • H. G. Park, K. R. Kim, I. S. Ko, B. H. Kim, On Polar Taxicab Geometry In A Plane, J. Appl. Math. & Informatics, 32 (2014), 783-790.
  • J. J. Mwemezi, Y. Haung, Optimal Facilitiy Location On Spherical Surfaces: Algorithm And Application, New York Science Journal, 4(7) (2011), 21-28.
  • Ö. Geli¸sgen, R. Kaya, Alpha(i) Distance in n-dimensional Space, Applied Sciences, Vol.10 (2006), 88-93.
  • Ö. Geli¸sgen, R. Kaya, Generalization of Soc. Geom. Graph. 10 (2006), 33-35. distance to n dimensional space, KoG. Croat.
  • Ö. Geli¸sgen, R. Kaya, On Alpha-Distance in Three Dimensional Space, Applied Sciences, (2006), 65-69.
  • Ö. Geli¸sgen, R. Kaya, M. Özcan, Distance Formulae in Chinese Checker Space, IJPAM, (1) (2006), 35-44.
  • S. Tian, Alpha Distance-A Generalization of Chinese Checker Distance and Taxicab Dis- tance, Missouri Journal of Mathematical Sciences, 17(1) (2005), 35-40.
  • Z. Akça, R. Kaya, On the Distance Formulae In three Dimensional Taxicab Space, Hadronic Journal, 27 (2006), 521-532.
  • Current address : Temel ERM ·I¸S :Eskisehir Osmangazi University, Faculty of Art and Sciences, Deparment of Mathematics and Computer Sciences, 26480 Eskisehir, TURKEY
  • E-mail address : termis@ogu.edu.tr Current address : Özcan GEL·I¸SGEN: Eskisehir Osmangazi University, Faculty of Art and Sciences, Deparment of Mathematics and Computer Sciences, 26480 Eskisehir, TURKEY
  • E-mail address : gelisgen@ogu.edu.tr
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Temel Ermiş This is me

Özcan Gelişgen This is me

Publication Date August 1, 2016
Published in Issue Year 2016 Volume: 65 Issue: 2

Cite

APA Ermiş, T., & Gelişgen, Ö. (2016). ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 65(2), 37-46. https://doi.org/10.1501/Commua1_0000000757
AMA Ermiş T, Gelişgen Ö. ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2016;65(2):37-46. doi:10.1501/Commua1_0000000757
Chicago Ermiş, Temel, and Özcan Gelişgen. “ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65, no. 2 (August 2016): 37-46. https://doi.org/10.1501/Commua1_0000000757.
EndNote Ermiş T, Gelişgen Ö (August 1, 2016) ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65 2 37–46.
IEEE T. Ermiş and Ö. Gelişgen, “ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 65, no. 2, pp. 37–46, 2016, doi: 10.1501/Commua1_0000000757.
ISNAD Ermiş, Temel - Gelişgen, Özcan. “ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 65/2 (August 2016), 37-46. https://doi.org/10.1501/Commua1_0000000757.
JAMA Ermiş T, Gelişgen Ö. ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65:37–46.
MLA Ermiş, Temel and Özcan Gelişgen. “ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 65, no. 2, 2016, pp. 37-46, doi:10.1501/Commua1_0000000757.
Vancouver Ermiş T, Gelişgen Ö. ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN SPACE. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2016;65(2):37-46.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.